NIV guide

This is made to simplify the initial settings in different clinical conditions

- What to choose to perform NIV
- Contraindications for NIV
- Predictors of failure of NIV
- What to Monitor during NIV

- Choice of the interface, ventilator and circuit is dependent on the illness severity of each patient and on the clinical expertise of the Physician and/or Respiratory Therapist.
- Suggestions in this guide are NOT a substitute for good clinical judgement.
- Settings values are proposed pressures to start the application of NIV and may go up to the upper limit or even more when needed.
- Settings refer also only to Pressure Support Ventilation (that is by far the most used in clinical practice for NIV) unless specified.
- Backup rate depends on the spontaneous breathing of the patient / "Rise Time" setting depends on the ventilatory demand.
- For adult patient only.
Patient interface classification

- Nasal mask
- Oro-nasal mask
- Full face mask

The print quality of this copy is not an accurate representation of the original.
How to read
Choose the best material & settings to perform NIV for different type of diseases
For each **category**, start with best choice first and if not available move to **alternatives**

<table>
<thead>
<tr>
<th>Mask</th>
<th>Circuit</th>
<th>Ventilator</th>
<th>Settings</th>
<th>Oxygen supply system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best choice</td>
<td>Mask type #1</td>
<td>Circuit type #1</td>
<td>Ventilator type #1</td>
<td>Settings #1</td>
</tr>
<tr>
<td>1st alternative</td>
<td>Mask type #2</td>
<td>Circuit type #2</td>
<td>Ventilator type #2</td>
<td>Settings #2</td>
</tr>
<tr>
<td>2nd alternative</td>
<td></td>
<td>Circuit type #3</td>
<td>Ventilator type #3</td>
<td></td>
</tr>
</tbody>
</table>

Example: depending on your compatible material stock you could choose the following:

→ mask #1 + circuit type #3 + ventilator #2 + settings #1 + oxygen #1

The print quality of this copy is not an accurate representation of the original.
The print quality of this copy is not an accurate representation of the original.
Severe COPD exacerbation pH < 7.30
Protected environment (ICU, respiratory intensive care unit, step-down unit etc.)

<table>
<thead>
<tr>
<th>Mask</th>
<th>Circuit</th>
<th>Ventilator</th>
<th>Settings</th>
<th>Oxygen supply system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best choice</td>
<td>Oro-nasal</td>
<td>Single limb with intentional leak</td>
<td>• Leak compensation</td>
<td>Low flow external circuit to get</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Backup rate</td>
<td>SaO₂ > 92%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Waveform monitoring¹</td>
<td></td>
</tr>
<tr>
<td>1st alternative</td>
<td>Full face</td>
<td>Single limb with expiratory valve</td>
<td>PAV³</td>
<td>Air-oxygen blender</td>
</tr>
<tr>
<td>2nd alternative</td>
<td>Dual limb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The print quality of this copy is not an accurate representation of the original.
The print quality of this copy is not an accurate representation of the original.
Mild COPD exacerbation $7.30 \leq \text{pH} \leq 7.35$

Possibly out of ICU

<table>
<thead>
<tr>
<th>Mask</th>
<th>Circuit</th>
<th>Ventilator</th>
<th>Settings</th>
<th>Oxygen supply system</th>
</tr>
</thead>
</table>
| **Best choice** | Nasal | Single limb with intentional leak | • Leak compensation
• Backup rate | • PEEP = 4-6 cmH₂O
• PS above PEEP = 8-15 cmH₂O and up
• Backup rate 8-12 bpm | Low flow external circuit to get
SaO₂ > 92% |
| **1st alternative** | Oro-nasal | Single limb with expiratory valve | PAV⁴ | |
| **2nd alternative** | Full face | Dual limb | | |

3. PK. Plant, JL. Owen, MW. Elliott: One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: implications for the provision of non-invasive ventilation and oxygen administration. Thorax (2000); 55: 550-554

The print quality of this copy is not an accurate representation of the original.
The print quality of this copy is not an accurate representation of the original.
Cardiogenic pulmonary edema

Pre-hospital, emergency, ICU, ...

Ventilator Settings

<table>
<thead>
<tr>
<th>Mask</th>
<th>Circuit</th>
<th>Ventilator</th>
<th>Settings</th>
<th>Oxygen supply system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best choice</td>
<td>High flow system generator with CPAP valve and oro-nasal mask(^1)</td>
<td>In case of hypercapnia: Leak compensation</td>
<td>• PEEP = (\sim 10) cmH(_2)O to get a SaO(_2) > 92(^2)</td>
<td>High pressure oxygen & venturi</td>
</tr>
<tr>
<td>1(^{st}) alternative</td>
<td>Full face</td>
<td>Single limb</td>
<td>• CPAP = 6-10 cmH(_2)O(^3) • PS above PEEP = 6-10 cmH(_2)O</td>
<td>Air-oxygen blender</td>
</tr>
<tr>
<td>2(^{nd}) alternative</td>
<td>• Nasal mask • Helmet(^4) (only w/ High Flow CPAP)</td>
<td>Dual limb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The print quality of this copy is not an accurate representation of the original.
The print quality of this copy is not an accurate representation of the original.
Hypoxic respiratory failure
Pre-hospital, emergency, ICU, …

<table>
<thead>
<tr>
<th>Best choice</th>
<th>Mask</th>
<th>Circuit</th>
<th>Ventilator</th>
<th>Settings</th>
<th>Oxygen supply system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oro-nasal</td>
<td>Single limb with intentional leak</td>
<td>• Leak compensation</td>
<td>• PEEP = 4-8 cmH₂O¹</td>
<td>Air-oxygen blender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Backup rate</td>
<td>• PS above PEEP = 12-25 cmH₂O and up²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Waveform monitoring</td>
<td>• Backup Rate 12-16 bpm</td>
<td></td>
</tr>
<tr>
<td>1st alternative</td>
<td>Full face</td>
<td>Single limb with expiratory valve</td>
<td></td>
<td>PAV³</td>
<td></td>
</tr>
<tr>
<td>2nd alternative</td>
<td>Helmet⁴</td>
<td>Dual limb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The print quality of this copy is not an accurate representation of the original.
Contraindications to non invasive ventilation

Absolute contraindications

- Cardiac or respiratory arrest
- Non-respiratory organ failure (i.e., GI bleeding, hemodynamic instability...)
- Upper airways obstruction
- Need to protect the airways
- Inability to clear secretion
- Facial surgery or trauma

Relative contraindications

- Coma and severe sensorium impairment
- Agitation or diaphoresis
- Severe hypoxia (i.e. $\text{PaO}_2/\text{FiO}_2 < 100$)
- Very limited spontaneous breathing

2. R. Scala, M. Naldi, S. Nava: Non-invasive positive pressure ventilation in COPD patients with acute hypercapnic respiratory failure and altered level of consciousness. Chest (2005); 128: 1657-1666
The print quality of this copy is not an accurate representation of the original.
Predictors of failure for NIV

COPD exacerbation
- Arterial blood gases at 2 hrs
 - If pH does NOT improve ≥ 7.25 and/or respiratory rate is still ≥ 35 breath/min then rate of NIV failure is very high
- SAPS II > 29 at admission

Cardiogenic pulmonary edema
- **At admission**
 - pH < 7.25
 - Acute myocardial infarction
 - Hypercapnia
 - Ejection fraction < 30%
 - Blood pressure < 140 mmHg

Acute hypoxic respiratory failure
- SAPS II > 34 at enrolment
- PaO₂/FiO₂ < 175 after 1 hr of NIV

1. S. Nava, P. Ceriana: Causes of failure of non-invasive ventilation. Respir Care (2004); 49: 295-303
What to monitor during NIV

- Breathing frequency
- \(\text{SaO}_2 \) (continuous monitoring)
- SAPS II
- Heart rate (continuously) and eventually EKG
- Sensorial status (Kelly scale)

- Leaks
- Accessory muscles activities
- Compliance to NIV
- Expired tidal volume (measured or estimated)

Warning: if necessary do not delay intubation
