Замечания по эксплуатации

Диагностическая ультразвуковая система Lumify 17 ноября 2021 г.

О замечаниях по эксплуатации

В документе «Замечания по эксплуатации» содержится информация об определенных реакциях системы, которые могут быть непонятны пользователю или вызывать у него трудности. Ознакомьтесь с нижеследующими замечаниями по эксплуатации и сохраните их копию вместе с руководствами по системе. Если возможно, положите документ «Замечания по эксплуатации» рядом с ультразвуковой системой.

Информация о маркировке

Сохраните документ *Справочная картотека* из комплекта поставки; в нем содержится информация о маркировке ультразвуковой диагностической системы Lumify.

Символ СЕ и адрес представителя в ЕС

Начиная с 1 марта 2019 г, компания Philips Ultrasound, Inc. переходит с символа CE уполномоченного органа CE0086 (UK) на новый символ CE уполномоченного органа CE2797 (EU-27). Кроме того, новый адрес нашего уполномоченного представителя в Европейском союзе (представитель в EC) следующий:

Philips Medical Systems Nederland B.V. Veenpluis 6 5684 PC Best The Netherlands

В течение перехода вы можете увидеть предыдущие знак СЕ и адрес в инструкциях по эксплуатации, а также на ультразвуковой системе и ее принадлежностях.

Работа с системой

- (только для устройств Android) В режиме импульсно-волнового Допплера использование команд быстрой фиксации и отмены фиксации может привести к прекращению звука. Иногда для устранения проблемы достаточно выполнить выход из режима импульсно-волнового Допплера и повторный вход в него.
- (только для устройств Android) Поворот устройства при переходе из двухмерного режима в режим импульсно-волнового Допплера может привести к прекращению работы программного обеспечения.
- (только для устройств Android) Если изменить значение скорости развертки, возможно неправильное масштабирование контура в режиме стоп-кадра.

- (только для устройств Android) При просмотре в полноэкранном режиме импульсноволнового Допплера в альбомной ориентации изображение элемента управления для выхода из полноэкранного режима терекрывает изображение элемента управления для инверсии контура , однако область активации для элемента управления инверсией контура остается сверху. Если коснуться элемента управления для выхода из полноэкранного режима, вместо данной операции может быть выполнена инверсия контура.
- Элементы управления **Fast Flow** и **Slow Flow** могут слегка перекрываться в режиме цветового картирования. Чаще всего это происходит на мобильных устройствах iPad 5-го поколения в альбомной ориентации. Это не влияет на функциональные возможности элементов управления.
- (только для устройств iOS) Если вручную изменять дату рождения пациента в поле Date of Birth формы Patient Info, при удалении и повторном вводе всех четырех цифр года возникает ошибка. Для наилучшего результата введите заново всю дату.
- (только для устройств iOS) Панель навигации, в том числе элемент управления **Back**, отсутствует в форме **Contact Information** (доступной при выборе **Customer Information** в разделе **Settings**). Чтобы закрыть эту страницу, введите свои сведения о клиенте, а затем выберите **Continue**.
- (только для устройств iOS) Быстрое многократное касание элемента **Save** во время сканирования может привести к непредвиденному завершению работы программного обеспечения Lumify.
- (только для устройств iOS) Модуль питания Lumify (LPM) может перейти в спящий режим, если выйти из приложения Lumify или позволить мобильному устройству перейти в спящий режим. Если попытаться возобновить сканирование, когда LPM находится в спящем режиме, будет получено сообщение об ошибке подключения. Чтобы вывести LPM из спящего режима, нажмите кнопку на задней части LPM.

Использование службы Reacts (только для устройств Android)

При ответе на входящий вызов службы Reacts с другого устройства Lumify может произойти неожиданное завершение работы программного обеспечения Lumify. Чтобы снизить вероятность возникновения этой проблемы, перед ответом на вызов службы Reacts предоставьте доступ к камерам и микрофонам в приложении Lumify на принимающем устройстве.

Просмотр

- Воспроизведение экспортированных кинопетель в проигрывателе Windows Media на компьютере с операционной системой Windows может привести к появлению задержек воспроизведения. Используйте другой проигрыватель, чтобы избежать этой проблемы.
- (только для устройств Android) Поворот устройства может привести к исчезновению аннотаций.
- (только для устройств Android) В М-режиме или в режиме импульсно-волнового Допплера переключение на полноэкранное отображение может привести к изменению положения аннотаций.
- (только для устройств Android) Аннотации, сделанные в М-режиме или режиме импульсно-волнового Допплера, могут изменить расположение при просмотре.
- (только для устройств iOS) При прокрутке до нижней части длинного списка сохраненных исследований последнее исследование в списке может быть обрезано краем экрана.
- (только для устройств iOS) При экспорте нескольких исследований в локальный каталог необходимо подтверждать место назначения экспорта для каждого исследования; использовать одно окно для управления экспортом всех исследований невозможно.
- (только для устройств iOS) Последовательность выбранных изображений и кинопетель, отображаемая в исследовании, отличается от последовательности, отображаемой на устройствах Android.
- (только для устройств iOS) Во время экспорта исследования в разделе **Export Queue** отображается состояние экспорта **Aborted**. Состояние экспорта должно быть **In Progress**.
- (только для устройств iOS) Если при просмотре списка исследований в окне Saved Exams коснуться элемента Select, список прокручивается в сторону, противоположную запланированному выбору.

Техническое обслуживание системы

(только для устройств iOS) Зарядка мобильного устройства iPad mini 5 может быть не выполнена, если устройство подключено к модулю питания Lumify (LPM). Чтобы обеспечить полную зарядку модуля LPM и мобильного устройства iPad mini 5, заряжайте их по отдельности.

Изменения в информации для пользователя

Следующая информация заменяет или дополняет информацию, которая содержится на USB-носителе с информацией для пользователей.

Безопасность

Следующая информация дополняет информацию в документе Руководство пользователя.

Символы

Символ	Стандарты и ссылка	Описание ссылки	Дополнительные сведения
IP67	IEC 60529	Степени защиты,	Означает, что оборудование
		обеспечиваемые корпусами.	внутри корпуса защищено от
			попадания пыли и устойчиво
			к погружению на период до
			30 минут на глубину до 1 м.

Работа с системой

Следующая информация дополняет сведения в документе Руководство пользователя.

Подключение датчиков

ПРЕДУПРЕЖДЕНИЕ

Всегда подключайте кабель датчика напрямую к мобильному устройству. Компания Philips не рекомендует использовать переходники. Чтобы узнать об одобренных вариантах кабелей, обратитесь к местному представителю компании Philips.

Использование службы Reacts (только для устройств Android)

Следующая информация заменяет информацию в документе Руководство пользователя.

Коды доступа службы Reacts

Коды доступа службы Reacts могут быть применены или переданы для предоставления ограниченного доступа к стандартному плану службы Reacts. Для получения дополнительной информации о кодах доступа службы Reacts ознакомьтесь с положениями и условиями продажи. Если во время входа в службу Reacts установить флажок **Remember Me**, при обновлениях приложения Lumify или операционной системы Android система Lumify сохранит коды доступа Reacts вместе с другими настройками пользователя Lumify.

Коды доступа можно использовать или передать через веб-сайт службы Reacts:

https://reacts.com/philips/redeem

Выполнение исследования

Следующая информация дополняет сведения в документе Руководство пользователя.

Использование режима импульсно-волнового Допплера (только для устройств Android)

Скорости развертки

Скорость	Кардиологические	Некардиологические
Высокая	2 секунды	3 секунды
Средняя	3 секунды	5 секунд
Медленная	5 секунд	8 секунд

Выполнение измерений в режиме импульсно-волнового Допплера (только для устройств Android)

Измерения импульсно-волнового Допплера в системе Lumify подразделяются на три основные категории: измерения **Velocity**, **Distance** и **Trace**. Данные измерений, отображаемые после завершения каждого измерения, меняются в зависимости от начальных настроек исследования, как показано в следующей таблице:

Измерения импульсно-волнового Допплера, доступные для каждой из начальных настроек исследования

Начальная	Измерения скорости	Измерения расстояния	Измерения контура
настройка			
исследования			
Cardiac	Velocity, PG	Time, Slope, P1/2t	Vmax, MaxPG, MeanPG, VTI
OB/Gyn	Velocity	PSV, EDV, S/D, RI	PSV, EDV, MDV, S/D, RI
Vascular	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI, VTI
FAST	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI
Abdomen	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI
Lung	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI
MSK	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI
Soft Tissue	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI
Superficial	Velocity	PSV, EDV, RI	PSV, EDV, MDV, RI

Пояснения к аббревиатурам и сокращениям измерений						
EDV — конечно-	MeanPG — средний	PSV — пиковая	Vmax — максимальная			
диастолическая	градиент давления	систолическая скорость	скорость			
скорость						
MaxPG —	Р1/2t — время полуспада	RI — индекс	VTI — интеграл скорости			
максимальный	давления	резистентности	кровотока			
градиент давления						
MDV — минимальная	РG — пиковый градиент	S/D — отношение				
диастолическая	давления	систолической и				
скорость		диастолической скорости				

Выполнение измерений скорости

- 1. Получите изображение допплеровской кривой, которую необходимо измерить.
- 2. Коснитесь клавиши Measure (Измерения).
- 3. Коснитесь элемента **Velocity**, затем перетащите измеритель на пик скорости, который необходимо измерить.
- 4. Повторите действие 3 для получения до четырех отдельных измерений скорости.
- 5. Чтобы сохранить изображение с показанными результатами измерений, коснитесь элемента **Save Image**.

Выполнение измерений расстояния

- 1. Получите изображение допплеровской кривой, которую необходимо измерить.
- 2. Коснитесь клавиши Measure (Измерения).
- 3. Коснитесь элемента **Distance**, затем перетащите первый измеритель на пиковую систолическою скорость (PSV).
- 4. Перетащите второй измеритель к конечной диастолической скорости (EDV).
- 5. Чтобы сохранить изображение с показанными результатами измерений, коснитесь элемента **Save Image**.

Выполнение измерений контура

- 1. Получите изображение допплеровской кривой, которую необходимо измерить.
- 2. Коснитесь клавиши Measure (Измерения).
- 3. Коснитесь элемента **Trace**, затем перетащите первый измеритель в начало кривой, которую необходимо измерить.
- 4. Коснитесь начала кривой еще раз для создания второго измерителя, а затем перетащите новый измеритель над формой одного цикла.
- 5. Чтобы сохранить изображение с показанными результатами измерений, коснитесь элемента Save Image.

Справочная литература

Следующая информация дополняет сведения в документе Руководство пользователя.

Справочная литература по эхокардиографии взрослых

Baumgartner, Helmut, et al. "Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice." *European Journal of Echocardiography*, 10: 1-25, 2009.

Calafiore, P., Stewart, W.J. "Doppler Echocardiographic Quantitation of Volumetric Flow Rate," *Cardiology Clinics*, Vol. 8, No. 2: 191-202, May 1990.

Rudski, Lawrence, et al. "Guidelines for the Echocardiographic Assessment of the Right Heart in Adult: A Report from the American Society of Echocardiography." *Journal of the American Society of Echocardiography*, Vol. 23, No. 7: 685-713, 2010.

Zoghbi, William, et al. "Recommendations for Evaluation of Prosthetic Valves with Echocardiography and Doppler Ultrasound." *Journal of the American Society of Echocardiography*, Vol. 22. No. 9: 975-1014, 2009.

Максимальный градиент давления (упрощенное уравнение Бернулли)

Silverman, N. H., Schmidt, K. G. "The Current Role of Doppler Echocardiography in the Diagnosis of Heart Disease in Children." *Cardiology Clinics*, Vol. 7, No. 2: 265-96, May 1989.

Reynolds, T. *The Echocardiographer's Pocket Reference, Second Edition*. Arizona Heart Institute Foundation, Phoenix, AZ, 2000, p. 382.

Максимальный градиент давления (полное уравнение Бернулли)

Silverman, N. H., Schmidt, K. G. "The Current Role of Doppler Echocardiography in the Diagnosis of Heart Disease in Children." *Cardiology Clinics*, Vol. 7, No. 2: 265-96, May 1989.

Средний градиент давления

Reynolds, T. *The Echocardiographer's Pocket Reference, Second Edition*. Arizona Heart Institute Foundation, Phoenix, AZ, 2000, p. 382.

Время полуспада давления

Hatle, L., Angelsen, B., Tromsal, A. "Noninvasive Assessment of Atrioventricular pressure half-time by Doppler Ultrasound" *Circulation*, Vol. 60, No. 5: 1096-104, November, 1979.

Интеграл скорости кровотока (VTI)

Silverman, N. H., Schmidt, K. G. "The Current Role of Doppler Echocardiography in the Diagnosis of Heart Disease in Children." *Cardiology Clinics*, Vol. 7, No. 2: 265-96, May 1989.

Справочная литература по сосудистым исследованиям

Скорость в допплеровском режиме (VEL)

Krebs, C. A., Giyanani, V. L., Eisenberg, R. L. *Ultrasound Atlas of Vascular Diseases*, Appleton & Lange, Stamford, CT, 1999.

Конечно-диастолическая скорость (EDV)

Strandness, D. E., Jr. *Duplex Scanning in Vascular Disorders*. Lippincott, Williams & Wilkins, Philadelphia, PA, 2002.

Минимальная диастолическая скорость (MDV)

Evans, D. H., McDicken, W. N. *Doppler Ultrasound Physics, Instrumentation, and Signal Processing, Second Edition*. John Wiley & Sons, Ltd., 2000.

Максимальный градиент давления (PG)

Powls, R., Schwartz, R. *Practical Doppler Ultrasound for the Clinician*. Williams & Wilkins, Baltimore, Maryland, 1991.

Максимальная систолическая скорость (PSV)

Krebs, C. A., Giyanani, V. L., Eisenberg, R. L. *Ultrasound Atlas of Vascular Diseases*, Appleton & Lange, Stamford, CT, 1999.

Индекс резистентности (ИР)

Zwiebel, W. J., ed. *Introduction to Vascular Ultrasonography, Third Edition*. W. B. Saunders Company, Philadelphia, PA 1992.

Отношение систолической и диастолической скоростей (С/Д)

Zwiebel, W. J., ed. *Introduction to Vascular Ultrasonography, Third Edition*. W. B. Saunders Company, Philadelphia, PA 1992.

Интеграл скорости кровотока (VTI)

Reynolds, T. *The Echocardiographer's Pocket Reference, Second Edition*. Arizona Heart Institute Foundation, Phoenix, AZ, 2000, p. 383.

Philips Ultrasound, Inc. 22100 Bothell Everett Hwy, Bothell, WA 98021-8431 USA www.philips.com/ultrasound

© Koninklijke Philips N.V., 2021 г. Все права защищены. Опубликовано в США. Воспроизведение или передача целиком или частично, в любой форме или любыми средствами, электронным, механическим или иным способом запрещается без предварительного письменного разрешения владельца авторских прав.