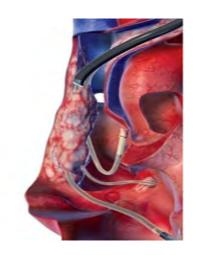
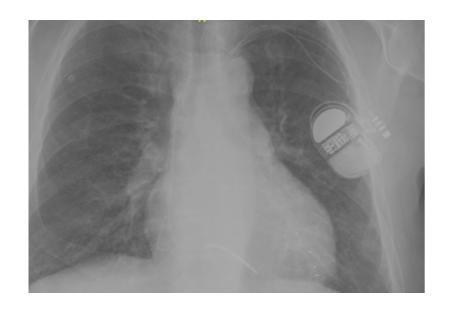


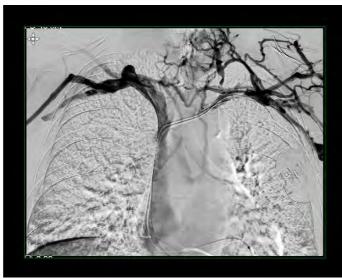
"Wenn es zur Komplikation kommt – vorbereitet auf allen Ebenen?"

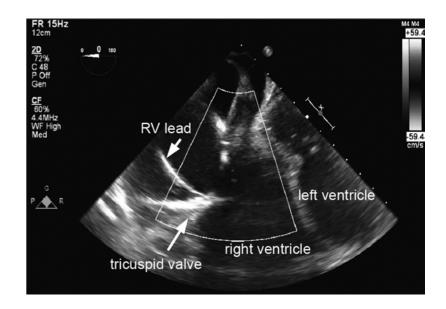

Simon Pecha

• Preoperative planning of a Lead extraction procedure

• Lead extraction-perioperative considerations




Pre-OP Planning

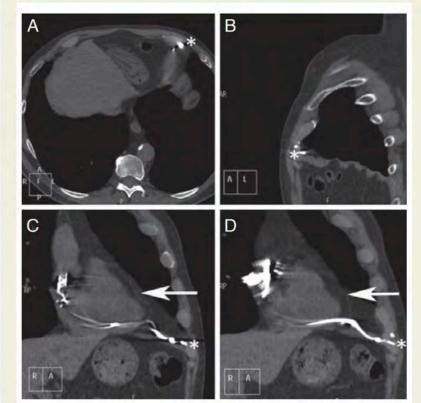

- Diagnostics: Chest X-ray, Venography, Transthoracic echo (Transesophageal echo), CT?
- Leads: Number, age, location, fixation, broken leads?, previous extraction attempts?
- Device interrogation: Lead dysfunction? Pacemaker dependency?
- Blood group checked and packed RBCs in the OR (Cell Saver available)
- Anticoagulation Management

Pre-OP Diagnostics

• Chest X-ray, Venography, Transthoracic echo (Transesophageal echo), CT?

Pre-OP CT Scan

• Do we need a preoperative CT scan?



Europace doi:10.1093/europace/euw074 CLINI

Table 2 Diagnostic accuracy	of imaging modalities in suspected cardiac perforation

	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy ^a (%)	1
CXR (visualized perforation only)	27.8	94.4	83.3	56.7	61.1	l,
CXR (visualized perforation or displaced lead or left-sided pleural effusion)	61.1	88.9	84.6	69.6	75	5
TTE (visualized Perforation only)	41.2	84.2	70	61.5	62.7	
TTE (visualized perforation or both pleural and pericardial effusions)	47	84.2	72.7	64	65.6	
СТ	100	85.7	87.5	100	92.9	1

CXR, chest radiography; TTE, transthoracic echocardiography; CT, computed tomography; PPV, positive predictive value; NPV, negative predictive value. ^aCalculated assuming prevalence of 0.5 as per the sample.

ebecca Preston³,

Conclusion

In the setting of cardiac perforation, CT is the imaging modality of choice. Transvenous lead extraction can be recommended as a safe, efficacious, and versatile intervention.

Pre-OP CT Scan

ORIGINAL - DEVICES

Clinical significance of incidentally detected lead perforations by computed tomography

Prerana Bhatia MD ➡, Tommy Chiou BS, Emma Svennberg MD, PhD, Swapnil Khoche MD, Kathleen Jacobs MD, Travis Pollema DO, Victor Pretorius MBChB, Ulrika Birgersdotter-Green MD

- A total of 143 patients and 348 leads were assessed
- The finding of lead perforation from CT was correlated with findings from peri-procedural transesophageal echocardiography (TEE) and outcomes of the lead extraction procedure

Conclusions

Results

- Lead perforations (including perforations < 5 mm and ≥ 5 mm) were detected in 66 (46%) patients and 73 (21%) leads.
- Lead perforation ≥ 5 mm were less common and detected in 13 (9%) of patients and 14 (4%) of leads.
- There was no significant difference in the rates of peri-procedural death, cardiac avulsion, cardiac tamponade or post-extraction

: Incidental delayed lead perforations detected by CT are common and do not correlate with significant TEE findings or adverse peri-procedural outcomes in patients undergoing lead extraction. Larger studies are needed to further characterize the frequency and safety of these findings.

Anticoagulation management

HeartRhythm 🥨

CLINICAL | VOLUME 15, ISSUE 12, P1777-1781, DECEMBER 01, 2018

Transvenous lead extraction during uninterrupted warfarin therapy: Feasibility and outcomes

Qi Zheng, MD, MHS 😕 🖻 Melanie Maytin, MD, FHRS • Roy M. John, MD, PhD, FHRS • Ammar M. Killu, MBBS . Laurence M. Epstein, MD, FHRS

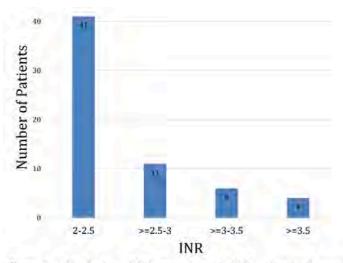
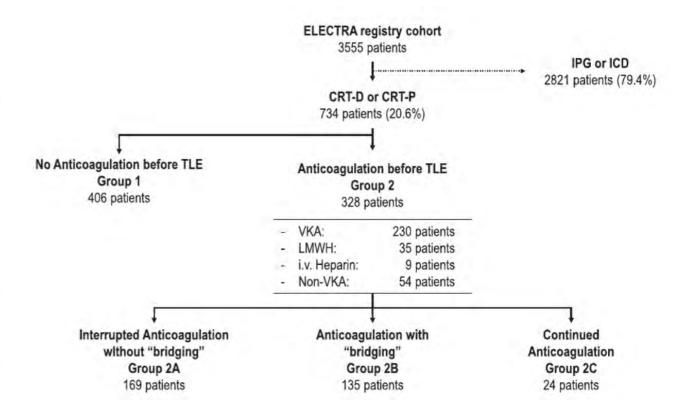


Figure 1 Distribution of INR range. A total of 62 patients underwent transvenous lead extraction during uninterrupted warfarin therapy with therapeutic INR (mean 2.5 ± 0.5; range 2.0 to 4.5). INR = international normalized ratio.

Table 5 Procedural outcomes

Total no. of leads attempted to be extracted	116
Total no. of leads extracted	114
Complete success	98.3%
Clinical success	98.3%
Procedure-related complications	
Femoral vein tear requiring surgical repair	1
Pericardial effusion resolved spontaneously	1
Deaths	1
Total no. of perioperative transfusions required	0
Total no. of anticoagulation reversing agents required	0

CONCLUSION TLE during uninterrupted warfarin therapy with therapeutic INR may be considered in patients at high risk for thromboembolism if performed by experienced operators at high-volume centers.


Anticoagulation management

ORIGINAL ARTICLE

WILEY

Impact of anticoagulation therapy on outcomes in patients with cardiac implantable resynchronization devices undergoing transvenous lead extraction: A substudy of the ESC-EHRA EORP ELECTRa (European Lead Extraction ConTRolled) Registry

François Regoli MD, PhD¹ | Angelo Auricchio MD, PhD¹ | Andrea Di Cori MD² | Luca Segreti MD² | Carina Blomström-Lunqvist MD, PhD³ | Christian Butter MD⁴ | Jean-Claude Deharo MD⁵ | Charles Kennergren MD⁶ | Andrzej Kutarski MD, PhD⁷ | Cecile Laroche⁸ | Valery Zalevskiy MD⁹ | Giovanni Luzzi MD¹⁰ | Oscar Cano MD¹¹ | Marcin Grabowski MD¹² | Christopher Rinaldi MD, MG¹³ | Maria Grazia Bongiorni MD²

Anticoagulation management

Anticoagulation during Lead extraction

TABLE 3 Comparison of minor complications between the "bridging" and the other two periprocedural anticoagulation strategies

	AC interrupted & continued (N = 193)	AC «Bridging» (N = 135)	P
MINOR- Total	9 (4.7)	16 (11.9)	0.020
Intraprocedural	3 (1.6)	0	0.271
Arrhythmia	1	0	1.000
Blood transfusion	2	0	0.514

Conclusion: CRT patients treated with TLE under AC were more compromised but did not present more major complications compared to patients without AC. More minor complications were associated with "bridging" AC regimen.

Other	- I	0	1,000
Other	1	0	1.000
Pulmonary embolism not req. surgery	0	1	0.412
Prieumomorax req. criest tube	0	•	

Empfehlungen zur Sondenextraktion – Gemeinsame Empfehlungen der Deutschen Gesellschaft für Kardiologie (DGK) und der Deutschen Gesellschaft für Thorax-, Herzund Gefäßchirurgie (DGTHG)

Roland R. Tilz^{1,2,14} · Ralph Bosch^{3,13} · Christian Butter⁴ · Karl-Heinz Kuck^{1,14} · Sergio Richter⁵ · Philipp Sommer⁶ · Samer Hakmi⁷ · Thorsten Hanke⁸ · Michael Knaut⁹ · Christoph Starck^{10,11} · Heiko Burger¹²

Personelle Voraussetzungen

	Mindestanzahl an extra- hierten Elektroden/Jahr	Mindestanzahl an Prozeduren/Jahr	Zusatzanforderungen
Qualifizierter Operateur	20	15	Umfassende Qualifikation in Device-Implantationen (DGK-Zusatzqualifikation "Spezielle Rhythmologie – Aktive Herzrhythmusim- plantate" oder DGTHG-Zertifikat "HSM-, ICD- und CRT-Therapie – Modul 3" oder EHRA-Zertifikat "EHRA Certified Cardiac Device Specialist – Level 2")
Supervisor	1 -2 /10	30	Kumulativ > 75 Sondenextraktionen
Zentrum	20	15	Mindestens 1 qualifizierter Untersucher/Supervisor

EHRA European Heart Rhythm Association, HRS Heart Rhythm Society, DGK Deutsche Gesellschaft für Kardiologie, DGTHG Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie, HSM Herzschrittmacher, ICD Implantierbarer Kardioverter-Defibrillator, CRT kardiale Resynchronisationstherapie

Empfehlungen zur Sondenextraktion – Gemeinsame Empfehlungen der Deutschen Gesellschaft für Kardiologie (DGK) und der Deutschen Gesellschaft für Thorax-, Herzund Gefäßchirurgie (DGTHG)

Roland R. Tilz¹^{1,2,14} · Ralph Bosch^{3,13} · Christian Butter⁴ · Karl-Heinz Kuck¹^{1,14} · Sergio Richter⁵ · Philipp Sommer⁶ · Samer Hakmi⁷ · Thorsten Hanke⁸ · Michael Knaut⁹ · Christoph Starck¹^{0,11} · Heiko Burger¹¹²

Risikoklassifizierung

Extraktions- Risiko	Elektroden- Charakteristika	Extraktions- Tools	Patienten- Charakteristika [#]	Extraktions- Setting
Niedriges Risiko (Gruppe A)	Elektrodenalter <1 Jahr Alle Elektrodentypen (ausgenommen aktiv fixierte Koronarsinus-Elektroden*) Fehlender Nachweis einer Endokarditis/Endoplastitis	Stylets Locking stylets Nur Zugangsweg von Implantationsstelle	Alle Patienten (<u>Ausnahme</u> : Bei ausgeprägter Tascheninfektion / -perforation Sondenextraktion nur in Zentren mit Expertise in der Wundbehandlung)	KL, HOP, OP Herzchirurgie im Haus nicht erforderlich LVo+HVo-Zentrer Flache AnSed
Mittleres Risiko (Gruppe B)	Elektrodenalter 1-5 Jahre Schrittmacherelektroden mit aktiver Fixierung <3 Elektroden Fehlender Nachweis einer Endokarditis/Endoplastitis	Stylets Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Nur Zugangsweg von Implantationsstelle	Patienten ohne schwere kardiovaskuläre Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) Keine (oder pausierte) orale Antikoagulation	KL, HOP, OP Herzchirurgie im Haus erforderlich LVo+HVo-Zentrer Tiefe AnSed, VN (+TEE)
Hohes Risiko (Gruppe C)	Elektrodenalter 1-10 Jahre Alle Elektrodentypen (ausgenommen aktiv fixierte Koronarsinus-Elektroden*) ≥3 Elektroden Perforierte Elektroden Defekte/abgerissene Elektroden nach frustranem Extraktionsversuch Positiver Nachweis einer Endokarditis/Endoplastitis Vegetationen ≤2 cm oder >2 cm ohne Nachweis einer Rechtsherzinsuffizenz Vorausgegangene Sternotomie(n)	Stylets Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Femoral/jugular snare tools Alle Extraktions-Zugangswege	Patienten mit schweren kardiovaskulären Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) Orale Antikoagulation Subclavia-/Anonyma-Verschluss	KL, HOP, OP Herzchirurgie im Haus erforderlich Herzchirurg unmittelbar verfügbar Bevorzugt im HOP/OP mit Herzchirurg Bevorzugt HVo-Zentrum Bevorzugt VN+TEE, ggf. tiefe AnSed
Sehr hohes Risiko (Gruppe D)	Elektrodenalter >10 Jahre Implantation vor 30. Lebensjahr Elektroden im linken Atrium/Ventrikel Risiko-Elektroden: dual-coil ICD-Elektroden mit passiver Fixierung; externalisierte Sondenleiter; aktiv fixierte Koronarsinus-Elektroden Vegetationen >2 cm mit Nachweis einer Rechtsherzinsuffizenz und/oder Lungenembolie Vorausgegangene Sternotomie(n)	Stylet Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Femoral/jugular snare tools Powered Laser sheath* Alle Extraktions-Zugangswege	Patienten mit schweren kardiovaskulären Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) im kardiogenen/septischen Schock Linksventrikuläres Assist-Device EMAH-Patienten mit komplexer Anatomie ± operativer Korrektur Indikation zum TK-Ersatz bei präoperativ hochgradiger TI oder TK-Endokarditis	HOP, OP Herzchirurgie im Haus erforderlich Im HOP/OP mit Herzchirurg (Ausnahme: Im HKL mit Herzchirurg nur in sehr erfahrenen HVo-Zentren) Bevorzugt HVo-Zentren Bevorzugt VN+TEE, ggf. tiefe AnSed

Lead extraction setting UKE Hamburg (Group B-D)

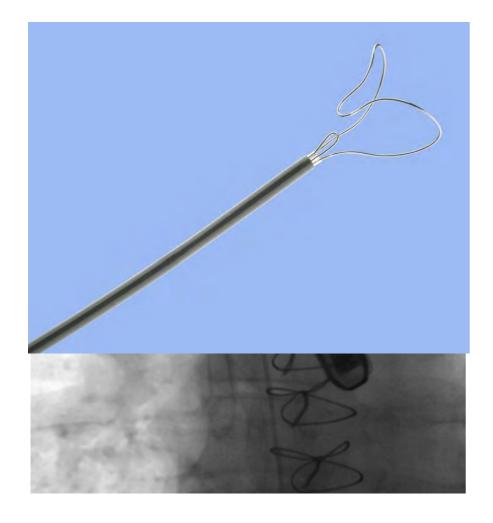
- Hybrid-OR
- Cardiac Surgeon and Cardiologist, Cardiac Anesthesiologist
- General anesthesia
- Invasive arterial blood pressure monitoring
- Transesophageal Echo (Pericardial/Pleural effusion)
- All patients need to be prepared for emergent sternotomy
- Heart-lung machine needs to be prepared in the OR
- Cell Saver available
- 4 F sheaths A. femoralis and 6F sheaths V. femoralis (Pigtail)
- Bridge occlusion balloon for SVC occlusion (available in OR)

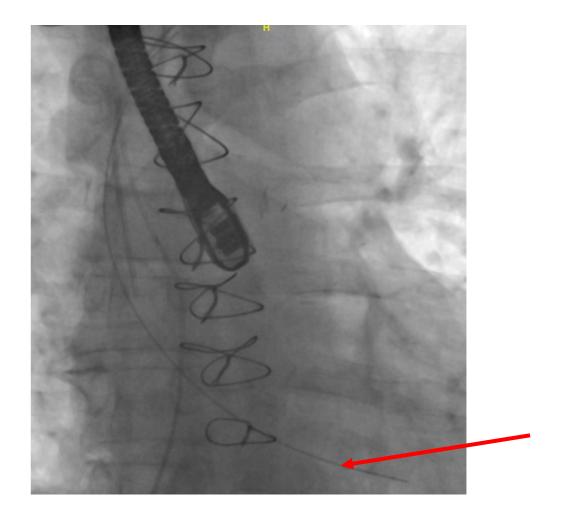
Lead extraction armentarium UKE Hamburg

Tools for Lead extraction

Laser sheaths

Mechanical rotational sheaths


Snares



Lead extraction in a patient after Heart Transplantion

• Bail-out: Femoral snaring of the lead (Needle Eye Snare)

Lead extraction in a patient after Heart transplantion

GermAn Laser Lead Extraction RegistrY

n = 2524	n	%
Mechanical	106	4.2
Snare	32	1.3
Mechanical & Snare	18	0.7
Mechanical & Other	3	0.1
Snare & Other	2	0.1
Other	7	0.3

In 6.7% of cases additional extraction tools were used

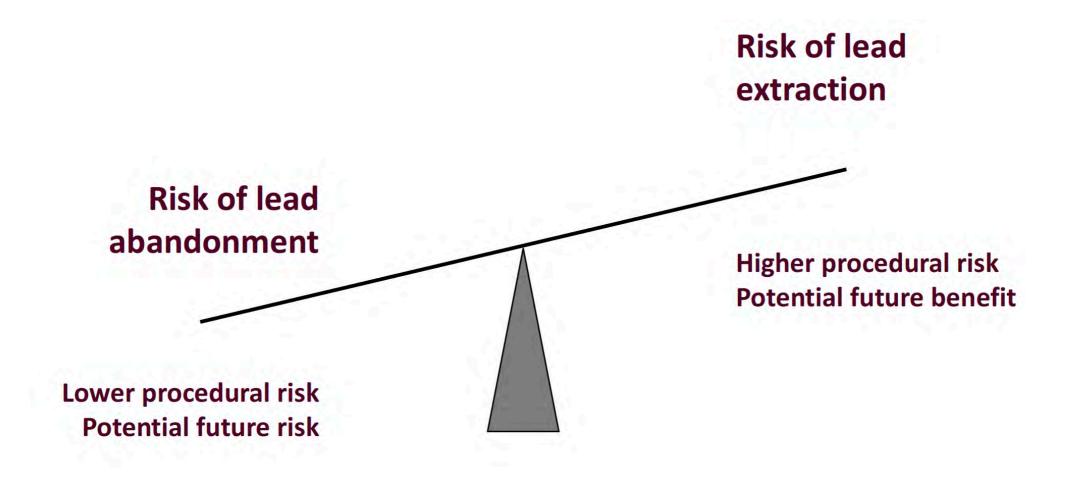
GALLERY GermAn Laser Lead Extraction RegistrY Clinical procedural Success rate

n = 2524	n	%
Laser sheaths only	2354	93.3
Laser sheaths combined with other tools	116	97.86
Failure	54	2.14

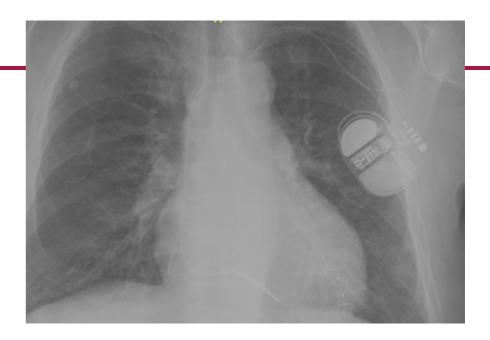
Multi-tool strategy increases the overall clinical success rate

• Preoperative planning of a Lead extraction procedure

• Lead extraction-perioperative considerations



Risk versus Risk

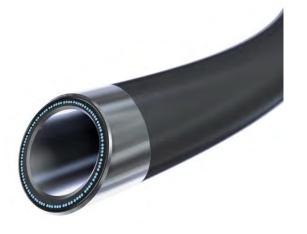



Patient history

- 61 years old male patient with ICM and Afib
- CRT-D Implantation (RV- and LV Lead) from left side in 2016
- Lead revision with mew Implantation of an RV Lead 2019
- Pacemaker dependency, LVEF 27%
- Stenosis of left- subclavian- and occlusion of innominate vein

Now:

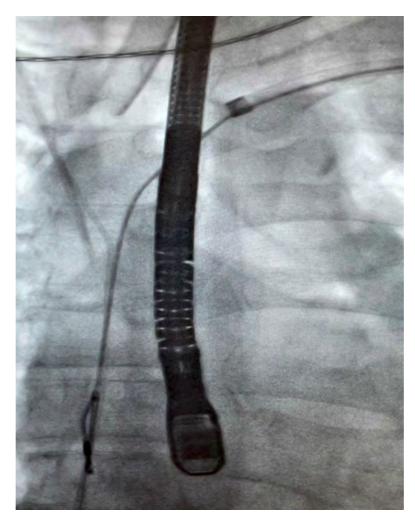
Presenting with Oversensing of RV-Lead and LV-lead with increased pacing threshold

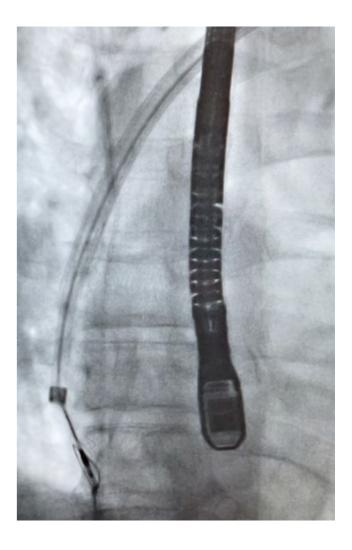


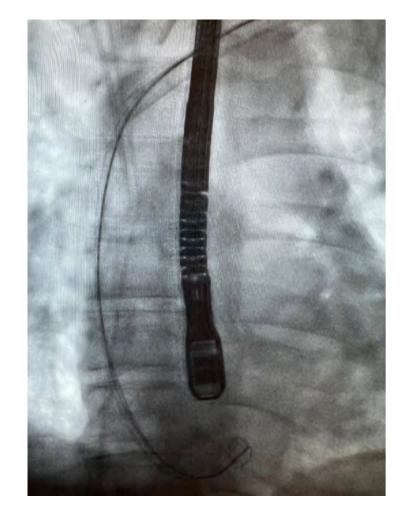
Operative Strategy:

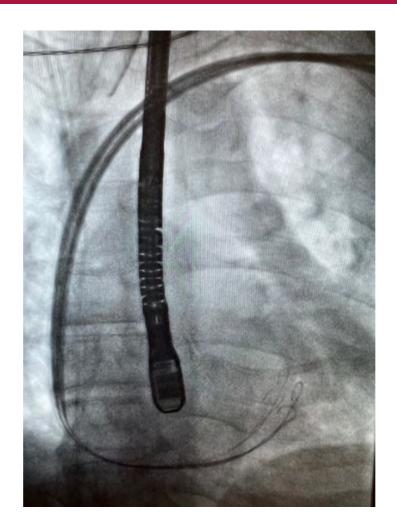
- Laser lead extraction of the RV-ICD and LV lead (16F GlideLight Laser sheaths)
- Transvenous new implantation of an RV- and LV lead from the ipsilateral side

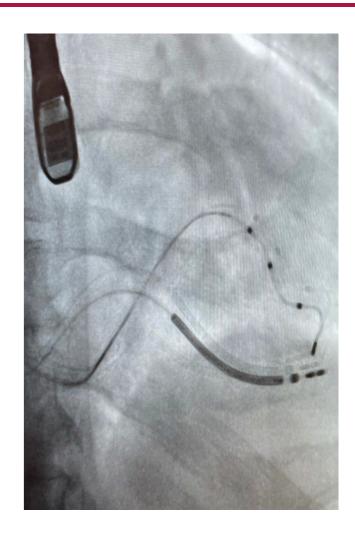
Procedure:

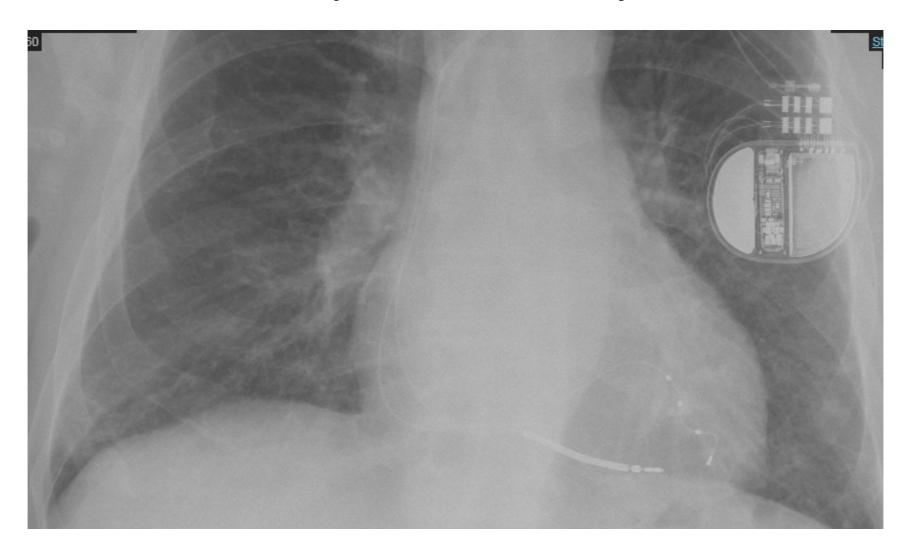

- Ipsilateral Laser recanalization of the left subclavian- and innominate vein (16F laser sheath)
- Preserving venous return from contralateral side in a young patient by avoiding contralateral lead implantation



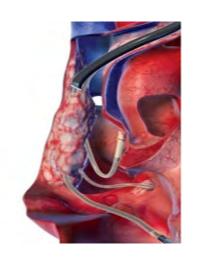

• LV-lead could be removed with manual traction (LLD), RV lead dislodged from RV after beginning of Laser lead extraction







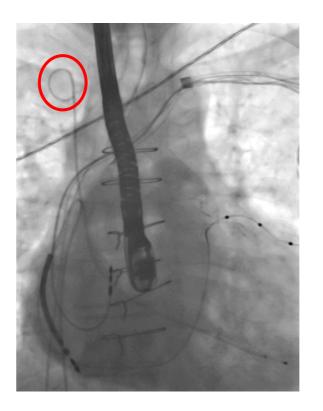
Insertion of 2 wires through 16 F Laser sheath, followed by 2 peel-away sheath Implantation of a single-coil RV-ICD lead and an LV lead


Postoperative Chest-X-Ray

• Lead Extraction-perioperative Work-up

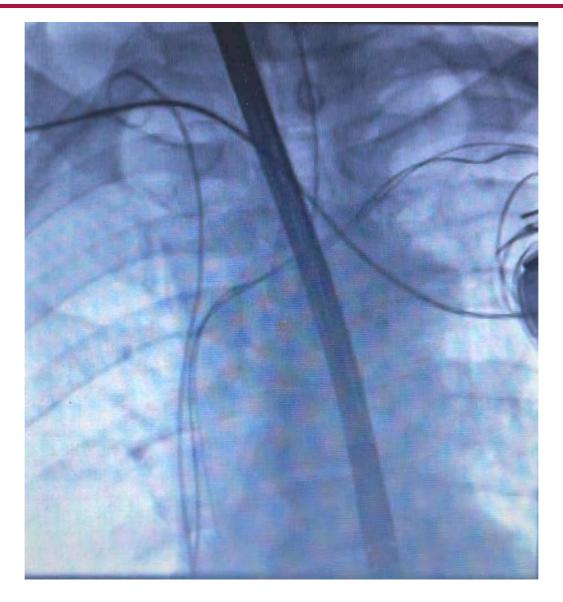
Femoral arterial sheaths

• 4F arterial sheaths, 6 F venous sheaths, Pigtail, Pacemaker (in PM dependent patients)



Pigtail

- Pigtail can be used for venography (suspected tear/perforation)
- Pigtail can be exchanged for a stiff wire to insert a bridge balloon in case of SVC perforation



• Bring the tip of your pigtail up to the internal jugular or right subclavian vein (you need to be above the location of a potential SVC tear)

Intraoperative Venography

• Can be repeated in case of hemodynamic instability with suspected perforation

Graphical Abstract

The GermAn Laser Lead Extraction RegistrY: GALLERY

GALLERY is a retrospective industry independent registry.

This registry is the largest Laser lead extraction database including **2524** patient from **24** German centers.

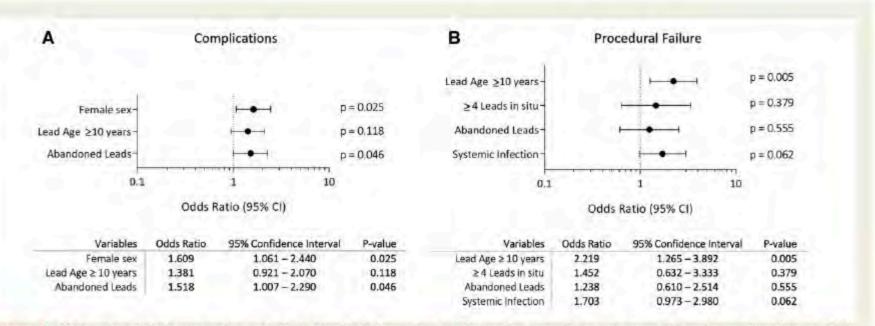
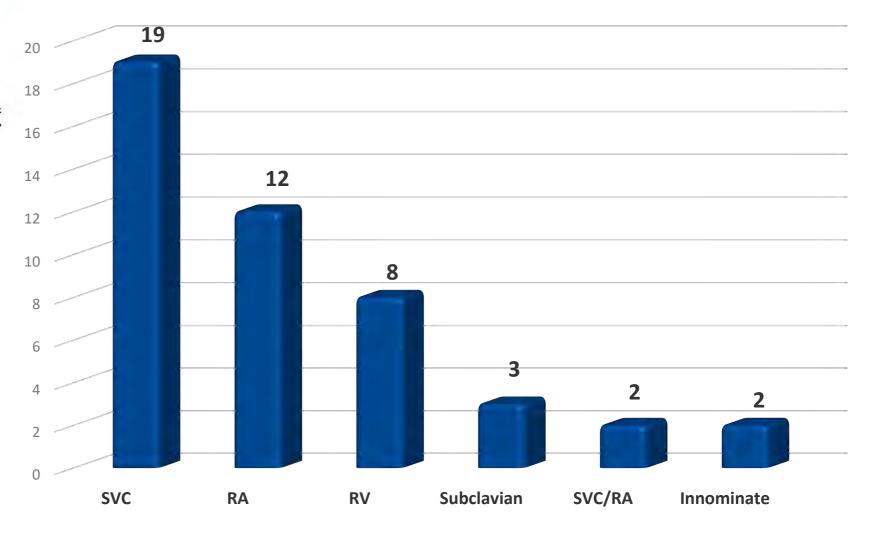


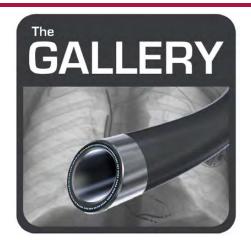
Figure 2 Multivariate logistic regression analysis to identify independent predictors for overall complications (A) and procedural failure (B) in patients undergoing transvenous lead extraction. A P-value of <0.05 was considered statistically significant. Variables that reached statistical significance in univariate analysis (not shown) were used as predictors for multivariate analysis. CI, confidence interval.

Patients with vascular/cardiac tears (n=46)

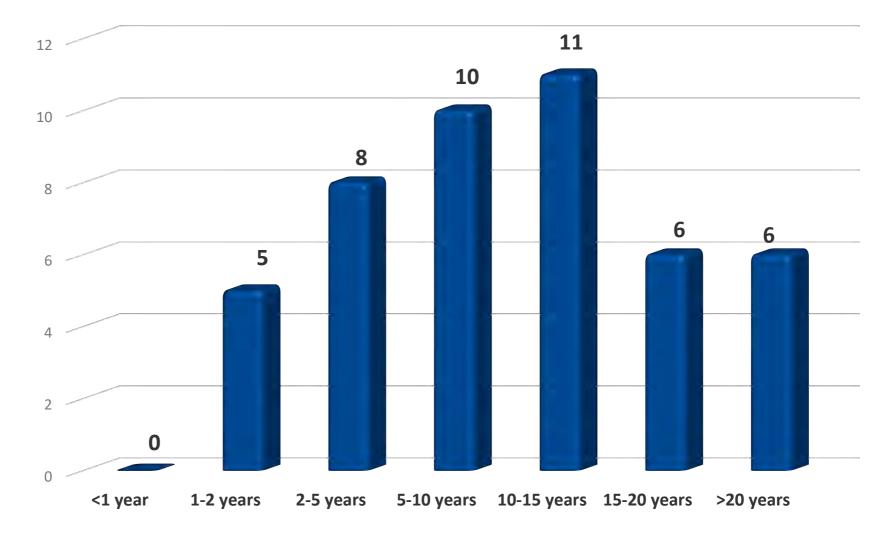


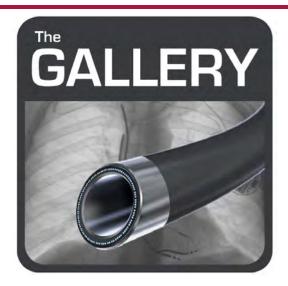
CLINICAL RESEARCH

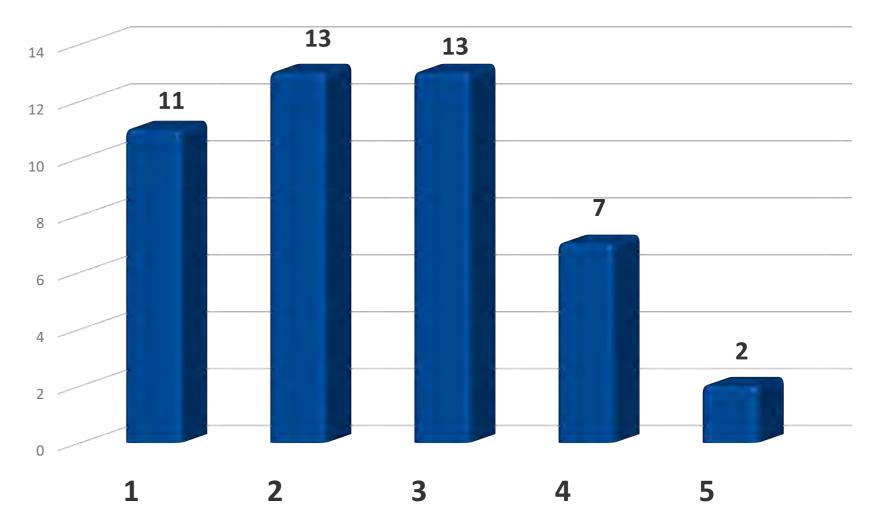
The GermAn Laser Lead Extraction GallerY: GALLERY

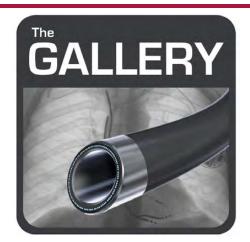

Simon Pecha © 1*†, Heiko Burger © 2†, Da-Un Chung © 3, Viviane Möller © 4, Tomas Madej⁵, Alaa Maali © 6, Brigitte Osswald⁷, Raffaele De Simone⁸, Nadeja Monsefl⁹, Virgilijus Ziaukas 10, Stefan Erler¹¹, Hamdi Elfarra 12, Mathias Perthel 13, Mahmoud S. Wehbe 10, Naser Ghaffari 14, Tim Sandhaus 15, Henning Busk 16, Jan D. Schmitto 17, Volker Bärsch 18, Jerry Easo © 19, Marc Albert © 20, Hendrik Treede 21, Herbert Nägele © 22, Dieter Zenker 23, Yasser Hegazy 24, Donja Ahmadi © 1, Nele Gessler © 3, Wolfgang Ehrlich 2, Gabriele Romano © 8, Michael Knaut 3, Hermann Reichenspurner 1, Stephan Willems © 3, Christian Butter 4†, and Samer Hakmi 3†

Location of Vascular/cardiac tears (n=46)




Patients with vascular/cardiac tears (n=46)


Lead age in patients with Vascular tears (n=46)



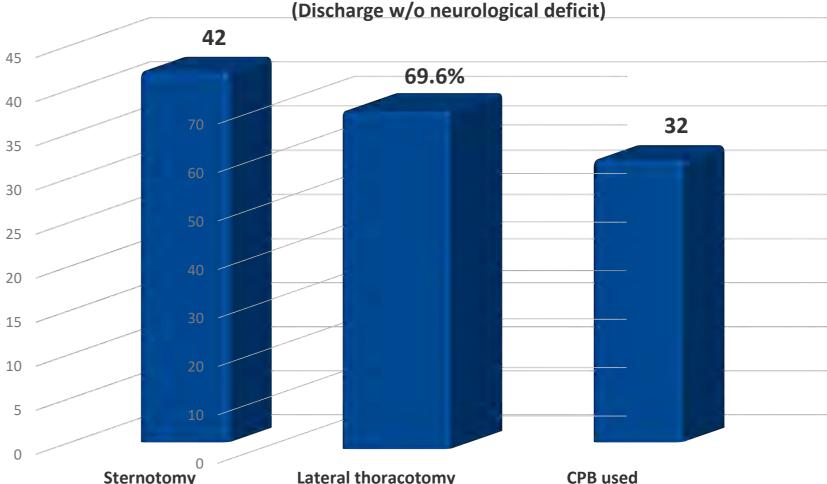
Number of Leads per patient (n=46)

• 43% of patients had abandoned leads, 18 % had previous extraction attempts

Type of Device

■ ICD ■ Pacemaker

Patients with vascular/cardiac tears (n=46)


ESC Europaœ (2022) 00, 1–9
European Society https://doi.org/10.1093/europaœ/euad056

CLINICAL RESEARCH

The GermAn Laser Lead Extraction GallerY: GALLERY

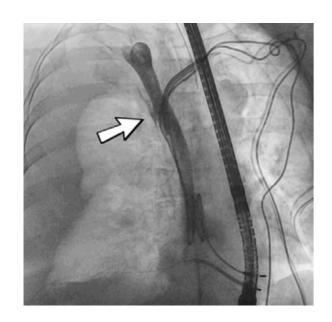
Simon Pecha 6 1*†, Heiko Burger 2†, Da-Un Chung 3, Viviane Möller 4, Tomas Madej5, Alaa Maali 6, Brigitte Osswald7, Raffaele De Simone8, Nadeja Monseff9, Virgilijus Ziaukas 10, Stefan Erler 11, Hamdi Elfarra 12, Mathias Perthel 13, Mahmoud S. Wehbe 10, Naser Ghaffari 14, Tim Sandhaus 15, Henning Busk 16, Jan D. Schmitto 17, Volker Bärsch 18, Jerry Easo 19, Marc Albert 20, Hendrik Treede 1, Herbert Nägele 22, Dieter Zenker 3, Yasser Hegazy 24, Donja Ahmadi 1, Nele Gessler 3, Wolfgang Ehrlich 2, Gabriele Romano 8, Michael Knaut 5, Hermann Reichenspurner 1, Stephan Willems 3, Christian Butter 4†, and Samer Hakmi 3†

Sternotomy Lateral thoracotomy CPB used
Out of these 46 patients, 69.6% were rescued by emergent surgical management
and were discharged without neurological or functional deficit

Empfehlungen zur Sondenextraktion – Gemeinsame Empfehlungen der Deutschen Gesellschaft für Kardiologie (DGK) und der Deutschen Gesellschaft für Thorax-, Herzund Gefäßchirurgie (DGTHG)

Roland R. Tilz^{1,2,14} · Ralph Bosch^{3,13} · Christian Butter⁴ · Karl-Heinz Kuck^{1,14} · Sergio Richter⁵ · Philipp Sommer⁶ · Samer Hakmi⁷ · Thorsten Hanke⁸ · Michael Knaut⁹ · Christoph Starck^{10,11} · Heiko Burger¹²

Extraktions- Risiko	Elektroden- Charakteristika	Extraktions- Tools	Patienten- Charakteristika [#]	Extraktions- Setting
Niedriges Risiko (Gruppe A)	Elektrodenalter <1 Jahr Alle Elektrodentypen (ausgenommen aktiv fixierte Koronarsinus-Elektroden*) Fehlender Nachweis einer Endokarditis/Endoplastitis	Stylets Locking stylets Nur Zugangsweg von Implantationsstelle	Alle Patienten (<u>Ausnahme</u> : Bei ausgeprägter Tascheninfektion / -perforation Sondenextraktion nur in Zentren mit Expertise in der Wundbehandlung)	KL, HOP, OP Herzchirurgie im Haus nicht erforderlich LVo+HVo-Zentre Flache AnSed
Mittleres Risiko (Gruppe B)	Elektrodenalter 1-5 Jahre Schrittmacherelektroden mit aktiver Fixierung <3 Elektroden Fehlender Nachweis einer Endokarditis/Endoplastitis	Stylets Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Nur Zugangsweg von Implantationsstelle	Patienten ohne schwere kardiovaskuläre Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) Keine (oder pausierte) orale Antikoagulation	KL, HOP, OP Herzchirurgie im Haus erforderlich LVo+HVo-Zentre Tiefe AnSed, VN (+TEE)
Hohes Risiko (Gruppe C)	Elektrodenalter 1-10 Jahre Alle Elektrodentypen (ausgenommen aktiv fixierte Koronarsinus-Elektroden*) ≥3 Elektroden Perforierte Elektroden Defekte/abgerissene Elektroden nach frustranem Extraktionsversuch Positiver Nachweis einer Endokarditis/Endoplastitis Vegetationen ≤2 cm oder >2 cm ohne Nachweis einer Rechtsherzinsuffizenz Vorausgegangene Sternotomie(n)	Stylets Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Femoral/jugular snare tools Alle Extraktions-Zugangswege	Patienten mit schweren kardiovaskulären Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) Orale Antikoagulation Subclavia-/Anonyma-Verschluss	KL, HOP, OP Herzchirurgie im Haus erforderlich Herzchirurg unmittelbar verfügbar Bevorzugt im HOP/OP mit Herzchirurg Bevorzugt HVo- Zentrum Bevorzugt VN+TEE, ggf. tiefe AnSed
Sehr hohes Risiko (Gruppe D)	Elektrodenalter >10 Jahre Implantation vor 30. Lebensjahr Elektroden im linken Atrium/Ventrikel Risiko-Elektroden: dual-coil ICD-Elektroden mit passiver Fixierung; externalisierte Sondenleiter; aktiv fixierte Koronarsinus-Elektroden Vegetationen >2 cm mit Nachweis einer Rechtsherzinsuffizenz und/oder Lungenembolie Vorausgegangene Sternotomie(n)	Stylet Locking stylets Non-powered dilator sheaths Rotational mechanical sheaths Femoral/jugular snare tools Powered Laser sheath* Alle Extraktions-Zugangswege	Patienten mit schweren kardiovaskulären Begleiterkrankungen (hochgradig eingeschränkte LVEF; schwere Herz- oder Niereninsuffizienz; schwere Gerinnungsstörung) im kardiogenen/septischen Schock Linksventrikuläres Assist-Device EMAH-Patienten mit komplexer Anatomie ± operativer Korrektur Indikation zum TK-Ersatz bei präoperativ hochgradiger TI oder TK-Endokarditis	HOP, OP Herzchirurgie im Haus erforderlich Im HOP/OP mit Herzchirurg (Ausnahme: Im HKL mit Herzchirurg nur i sehr erfahrenen HVo-Zentren) Bevorzugt HVo-Zentren Bevorzugt VN+TEE, ggf. tiefe AnSed


Patients with vascular/cardiac tears (n=46)

CLINICAL RESEARCH

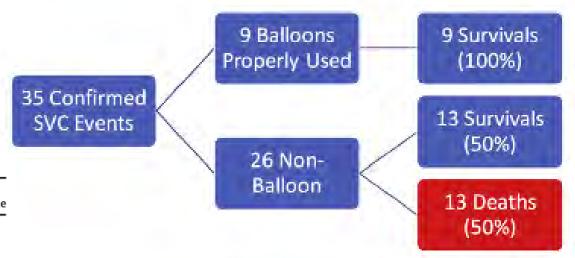
The GermAn Laser Lead Extraction GallerY: GALLERY

Simon Pecha 18th, Heiko Burger 27th, Da-Un Chung 3, Viviane Möller 4, Tomas Madej5, Alaa Maali 6, Brigitte Osswald7, Raffaele De Simone8, Nadeja Monseff9, Virgilijus Ziaukas10, Stefan Erler11, Hamdi Elfarra12, Mathias Perthel13, Mahmoud S. Wehbe10, Naser Ghaffari14, Tim Sandhaus15, Henning Busk16, Jan D. Schmitto17, Volker Bärsch18, Jerry Easo 19, Marc Albert 20, Hendrik Treede21, Herbert Nägele 22, Dieter Zenker23, Yasser Hegazy24, Donja Ahmadi 1, Nele Gessler 3, Wolfgang Ehrlich2, Gabriele Romano 8, Michael Knaut5, Hermann Reichenspurner1, Stephan Willems 3, Christian Butter47, and Samer Hakmi37

Location of Vascular/cardiac tears (n=46) 19 20 18 16 14 12 12 10 **SVC RA RV** Subclavian SVC/RA **Innominate**

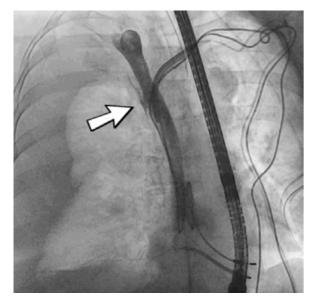
Pecha S et al. Europace. 2022 Jun 20:euac056.

Bridge Occlusion Balloon


Compliant endovascular balloon reduces the lethality of superior vena cava tears during transvenous lead extractions

Ryan Azarrafiy, BA,* Darren C. Tsang, BS,* Thomas A. Boyle, BS,* Bruce L. Wilkoff, MD, FHRS,† Roger G. Carrillo, MD, MBA, FHRS*

From the *Department of Surgery, Division of Cardiothoracic Surgery, University of Miami Miller School of Medicine, Miami, Florida, and †Department of Cardiovascular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.


Table 1 Patient demographics and outcomes

Characteristic	All SVC lacerations ($n = 35$)	Balloon cohort $(n = 9)$	No balloon or improper usage cohort ($n=26$)	P value
Age, years	60.2 (± 14.5)	58.3 (± 13.5)	60.8 (± 14.6)	.323
Gender, female	19 (54.3)	7 (77.8)	12 (46.2)	.135
Device type	23 (65.7) ICD	5 (55.6) ICD	18 (69.2) ICD	.686
	11 (31.4) PPM	4 (44.4) PPM	7 (26.9) PPM	.416
	1 (2.9) CRTD	o (o) crtd	1 (4.4) CRTD	1.000
Indication for extraction	11 (33.3) infectious	3 (33.3) infectious	8 (33.3) infectious	1.000
	22 (66.7) noninfectious	6 (66.7) noninfectious	16 (66.7) noninfectious	
	2 unavailable	` '	2 unavailable	
Extraction tools	34 (97.1) laser sheaths	9 (100) laser sheaths	25 (96.2) laser sheaths	1.000
	1 (2.9) mechanical sheath	, ,	1 (3.8) mechanical sheath	
Lead dwell time, years	$9.62~(\pm 3.9)$	10.6 (\pm 2.6)	9.3 (± 4.2)	.852
Discharged alive	22 (62.9)	9 (100)	13 (50.0)	.013

- Median lead age 96 months (16-360)
- 74% female patients
- None of the patients had prior cardiac surgery
- ICD leads 79%
- 9 out of 15 (60%) ICD patients had Dual Coil leads
- Sternotomy rate 100%
- CPB used in 84% of cases

Benefits of routine prophylactic femoral access during transvenous lead extraction @

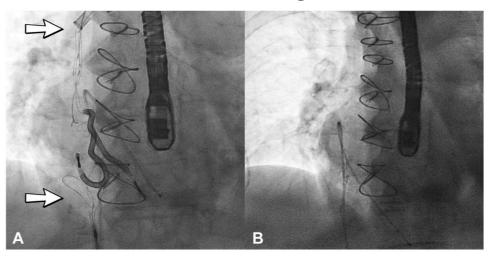
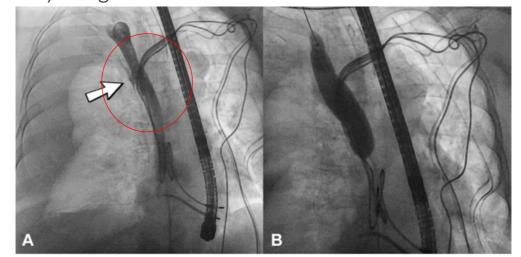

Da-Un Chung, MD,*¹ Lisa Müller, BSc,¹¹ Timm Ubben, MD,* Yalin Yildirim, MD,¹ Johannes Petersen, MD,¹ Christoph Sinning, MD,¹ Liesa Castro, MD,§ Till Joscha Demal, MD,¹ Lukas Kaiser, MD,* Nils Gosau, MD,* Hermann Reichenspurner, MD, PhD,¹ Stephan Willems, MD,* Simon Pecha, MD,¹¹ Samer Hakmi, MD*¹

Table 4	Actively engaged femoral sheaths (n	= 26)
Emergence asystol	y temporary pacing for sudden e	3 (11.5)
Snare for fragme	broken/damaged lead nts	10 (38.5)
Diagnosti	c venography for lacerations	3 (11.5)
Balloon a occlusi	ngioplasty for SVC stenosis/ on	3 (11.5)
Prophylad risk TLI	tic balloon placement for high-	6 (23.1)
	O for hemodynamic collapse	1 (3.9)


Values are given as n (%).

ECMO = extracorporeal membrane oxygenation; MCS = mechanical circulatory support; SVC = superior vena cava; TLE = transvenous lead extraction.

Femoral Snaring

- A) Venography confirming SVC Perforation
- B) Bridge Occlusion Balloon

Conclusion

Essential pre-op diagnostics:

Chest X-ray, TTE (TEE), PM interrogation, Venography (in complex cases), (CT in cases with suspected perforation)

• Anticoagulation Management

No need for heparin bridging in pts. on anticoagulation (aim for low therapeutic INR)

Expect the unexpected:

Always have a Plan B (Different extraction tools, subclavian and femoral approach...)

Lead extraction is a Team approach

(Electrophysiologist, Cardiac Surgeon, OR Nurse, Cardiac Anesthesiologist)

Be prepared for complications

The essential step in complication management is excellent preoperative preparation

Thank you for your attention!

University Heart & Vascular Center Hamburg

Martinistraße 52 | D-20246 Hamburg

Prof. Dr. Simon Pecha

Telefon +49 (0) 40 7410 - 52440

Telefax +49 (0) 40 7410 - 54931

s.pecha@uke.de | www.uke.de