

University Heart Center Hamburg

Fiber <u>Optic</u> RealShape (FORS) Technology 3D-Device <u>Guidance</u> in Practice

Tilo Kölbel, Joost van Herwaarden, Fiona Rohlffs, Giuseppe Panuccio

German Aortic <u>Center</u> Hamburg University Heart <u>Center</u> University Hospital <u>Eppendorf</u>

Disclosures

- Consultant: Cook Medical, Philips, Getinge, Terumo Aortic, Arterica, Medyria
- Research-grants: Cook Medical, Philips, Terumo Aortic, Medtronic
- Travel-grants: Cook Medical, Getinge proctoring speaking-fees,
- Speaking fees: Cook Medical, Philips, Getinge
- Shares: Mokita-Medical, Arterica, Medyria, Siemens, Philips
- IP: Cook Medical, <u>Terumo Aortic</u>, <u>Mokita</u> Medical
- Royalties: Cook Medical, Terumo Aortic

Aortic Interventions

Times of Change

Radiation Hazard Persists

A long time ago.....

Thoracic Live X-Ray

Radiologists hands

1967: Introduction of Colour TV in Europe

1967: Introduction of Colour TV in Europe

2020: Introduction of FORS Technology

FORS Technology

- * New Philips technology with CE-mark: two catheters and hydrophilic guidewire
- Embedded optical fiber enables real-time 3D visualization of the full shape of devices inside the body without the need for fluoroscopy

Devices currently available

Devices

- 1 FORS guide wire
- 2 FORS Berenstein catheter
- 3 FORS Cobra catheter

Bench-Top Comparison Fluoroscopy vs. FORS

Cannulation time: 5:45 min Fluoro time: 5:45 min Cannulation time: 2:20 min Fluoro time: 0 min

Case: Pseudoaneurysm Visceral Aorta

Previous TEVAR

Main-Body with Fluoro/Vesselnavigator

Set-up in Hamburg

Left Renal with FORS Catheter and Wire

Catheter In **Blue** Hydrophilic wire in **Yellow**

Right Renal with FORS Catheter and Wire

Catheter In **Blue** Hydrophilic wire in **Yellow**

Right Renal with FORS Catheter and Wire

DSA as road map

SMA with FORS Catheter and Wire

SMA with FORS Catheter and Wire

Celiac with FORS Catheter and Wire

SMA with FORS Catheter and Wire

PHILIPS

Ref

Case: Pseudoaneurysm Visceral Aorta

Result:		
Operating time:	201 min	
Fluoroscopy time:	22,2 min	
DAP:	6440 cGycm2	
DSA:	4370 cGycm2	
Fluoro:	2070 cGycm2	

Reference: Rohlffs et al. 2020; Eur J Vasc Endovasc Surg, epub

- * FORS technology allows 3D navigation by visualizing catheters and guidewires in full shape 3D using laser light.
- * High potential for reduction of radiation exposure and workflowimprovement by intuitive virtual biplane visualization.
- Revolutionary new tools on the horizon to reduce radiation and facilitate complex endovascular procedures.

Welcome to Hamburg!

6th Aortic Live Symposium

Dept. of Vascular Medicine University Heart & Vascular Center Hamburg

Main topics

Endovascular, hybrid, and

- Aortic valve reconstruction
- Thoracoabdominal aorta

Course directors

Konstantinos Tsagakis Essen, Germany

Founding Director Heinz Jakob Essen, Germany

Co directors Joseph Bavaria

Philadelphia, United States

Michael Borger Leipzig, Germany

Sebastian Debus Hamburg, Germany

Christian Detter Hamburg, Germany

Arjang Ruhparwar Essen, Germany

Stéphan Haulon Paris. France

Gustavo Oderich Rochester, United States

Get a taste of what awaits you: www.aortic-live.com

Congress organisation

CongO GmbH. Ruffinistrasse 16. 80637 Munich, Germany www.cong-o.com

Phone: +49.89.237574-65 +49.89.23 75 74 - 70 Fax: Home: www.cong-o.com

Fiber Optic RealShape (FORS) Technology 3D-Device <u>Guidance</u> in Practice

Tilo Kölbel, Joost van Herwaarden, Fiona Rohlffs, Giuseppe Panuccio

German Aortic Center Hamburg University Heart Center University Hospital Eppendorf

