Human Factors in Barrier Thinking in Healthcare

Dr Ron McLeod
Independent Human Factors Consultant
Ron McLeod Ltd
Barrier Thinking in Healthcare

Professor Ron McLeod
ron@ronmcleod.com
www.ronmcleod.com

Presentation to 21st National Biomedical & Clinical Engineering conference, Nottingham, November 2019
The importance of “Barriers” in healthcare

Never Events Policy and Framework.
NHS Improvement. (Jan 2018)

Never Events:
“..Serious Incidents that are wholly preventable because guidance or safety recommendations that provide strong systemic protective barriers are available and should have been implemented by all healthcare providers”.

Strong systemic protective barriers:
“.. successful, reliable and comprehensive safeguards or remedies”.

“The importance, rationale and good practice use of relevant barriers should be fully understood by and robustly sustained throughout the system, from suppliers, procurers, requisitioners, training units to frontline staff”.

Content

Barrier Management concepts in High Hazard industries
- Bowtie Analysis
- Barrier quality criteria
- Issues with current practice

Examples of Bowtie Analysis applied to healthcare
1. Primary care “Never Events”
2. Human error in Radiation Oncology

NHS Education (Scotland) Guidance
- Bowtie Analysis for Healthcare practitioners

© Ron McLeod Ltd 2019
Common approaches to proactive risk analysis

“Functional Safety”
• Failure Modes and Effects Analysis (FMEA)
• Fault Tree Analysis (FTA)
• Hazard and Operability Studies (HAZID/HAZOP)
• Probabilistic Risk Assessment (PRA)
• Layers of Protection Analysis (LOPA)
 – Safety Integrity Levels (SIL)
• Process Hazard Analysis (PHA)
• Human Reliability Analysis (HRA)

 What can go wrong?
 How can system components fail?
 How could failures escalate?
 How can failures be prevented?

 Assume linear model of accident causation.

Socio-technical systems approaches
• Functional Resonance Analysis Method (FRAM)
• Systems-Theoretic Process Analysis (STPA)

 Challenge assumptions of linear accident causation.

Bow-tie Analysis

 Focuses on what needs to go right.
 Understand how controls fail and how to assure them
 Independent of failure and escalation mechanisms.
Conceptual Barrier Model
Bowtie Analysis

- Critical Equipment
 - Physical structures or equipment that support a control.
- Critical Activities
 - Human tasks necessary to assure the integrity of structural or equipment controls.
- Critical Positions
 - Roles responsible for the performance of Critical Activities.
Benefits of Bowtie Analysis in healthcare

1. Improved awareness of the controls against adverse events;
2. Understanding of the quality and effectiveness of those controls;
3. Understand how controls fail, and how to protect against failure;
4. Identify where responsibility for control performance lies.
5. Recognise how different stakeholders contribute to control failure.
What goes wrong?

• Being seduced by the apparent simplicity of the method
• Jumping into drawing diagrams too early

• Lack of clarity of the Hazard / Adverse Event
• Too many “Barriers”
 – Not using barrier quality criteria
 – Not distinguishing between “Barriers” and “Safeguards
• Locating the adverse event too far to the right
• Treating human error as a Threat
 – It is a Degradation Factor
Too many Barriers!
The nature of Barriers

• Capable of blocking the threat on its own
 – Provided it functions as expected.
• Can be Passive or Active
• Active barriers must be able to: Detect, Decide and Act.
 – Often relies on individual Elements to achieve the three functions.

• The decision to call a control a “Barrier” will often be subjective:
 – Declaring a “Barrier” implies a commitment to allocate time and effort to ensuring the barrier is in place and effective
 • It requires a “Barrier Management Plan”
Barrier quality criteria

1. Ownership
 Somebody knows they are responsible for its existence and performance

2. Traceable
 To Management System

3. Specific
 To the threat/event

4. Effective
 Capable – if everything else fails - of blocking the threat

5. Independent
 A single failure should not be able to defeat more than one control

6. Capable of being Assured
 Evidence that it is in place and functioning as intended
“Key Safeguards”

There are few genuine full “Barriers” in healthcare
 – There is a high reliance on “Safeguards”
 – Barriers can be designed-in to protect against misuse of equipment.

“Key Safeguards”
• Controls that cannot satisfy the conditions to be declared as “Barriers”
• But nevertheless must be relied on
 – Are more important than other “Safeguards”
• Require special effort and attention
 – Included in the Barrier Management Plan
 – Recognition that they are inherently less robust.
Locating the Adverse Event

Long time-scale

- Managed: High reliance on compliance
- Resilient: Reliance on flexibility, communication and problem solving

Short time-scale

Labels/ alerts	Cross-checks	A&E	ICU
£ | £ | ££ | £££
Example of Adverse Event too far to the right

Failure to identify equipment containing PII prior to decommissioning.

- PII stored on medical equipment
- Equipment not identified as containing patient data (when procured)
- Equipment not a healthboard asset
- Device temporarily out with healthboard
- Litigation
- Failure to meet statutory requirement
- Negative press
- Psychological damage
Example 1: Bowtie Analysis in primary care

1 day workshop
• 4 GPs
• 2 Practice Managers
• 2 Patient Safety researchers

Top Event = “Never Event”
• Prescribing systemic oestrogen-only hormone replacement therapy for a patient with an intact uterus
• 37/501 (7%) GPs estimate it to have occurred at least once in the previous year
• 29% estimate likely to occur in the next five years in their practices.

Suggested controls included;
– Electronic health records
– Pharmacy review of prescriptions
– Prescriber knowledge and experience
– Formal cross check by GP colleague
– Protocol / policy / procedures
– Formulary
– Patient knowledge
– Regular review of patient records

Are any of these Barriers?
Key Safeguards?
Example 1: Bowtie framework for a “Never Event”

“Never Event” barrier degradation factors

- Protocol not accessible when needed
- Protocol out of date
- Content incomplete or incorrect

- Unaware protocol exists
- Clinician resistance to using protocol
- Protocol overload

- Local protocol
- Competent clinician

- Systemic oestrogen-only HRT prescribed for a patient with an intact uterus

- Clinical competence and experience

- Female patient attends for HRT
- New patient records not up to date
- Medication not linked to diagnosis
- GP unaware of admin staff changes to patient data
- Warning badly designed
- Warning disabled by practice
- Warning removed during software upgrade

OR

- Systemic oestrogen-only HRT prescribed for a patient with an intact uterus

- Lack of awareness of the risk
- Workload / distraction
- Lack of awareness of frequency of failure of controls
- Lack of awareness of patient condition

- Locum unfamiliar with system
- Warning overload

- Warning disabled by practice
Safeguards against barrier degradation

- Systemic oestrogen-only HRT prescribed for a patient with an intact uterus
- Female patient attends for HRT
- Warning removed during software upgrade
- Included in s/w change process
- Recognition of warning as a safety critical element
- Communication with prescribers and advisers

- Health Record System
- System warning
- Clinician response

- Warning prioritisation
- Usability testing
- Clinical distinguished from cost-based warnings
- Design of warning system
- Warning overload

- Warning disabled by practice
- Critical warnings locked
- Partner agreement
- Contract arrangements

- Recognition of warning as a safety critical element
- Included in s/w change process
- Communication with prescribers and advisers

- Warning badly designed
- User Interface design standards
- Safeguards against barrier degradation

© Ron McLeod Ltd 2019
Unknown progression towards AKI

2. Presence of polypharmacy of diuretic, Ace Inhibitors, Methotrexic, NSAIDs (DAMN drugs)

2.1 Annual polypharmacy review by clinician

2.2(1) Prescribing alerts

2.2(2) Clinical judgement on relevance of alerts

2.3 “Sick Day Rule” cards

Unknown progression towards AKI

System not updated due to IT problems

Business Managers review to ensure alerts up to date

IT dept. check system roll-out within 24 hrs

Raise design concerns with NHS IT

GP’s care and attention – no rushing

On-screen alerts poorly designed
Example 2: Bowties in Radiation Oncology

• Collaborative study between University of North Carolina, University of Michigan and Ohio State University
• Explored potential use of Bowtie Analysis for understanding human errors that defeat controls in Radiation Therapy
 – Used concept of Layered Bowties to examine human error as a degradation factor for main controls.
• Adverse Event = Site Set-up errors
• Data from voluntary incident reporting systems used to examine effectiveness of controls against human error in RT care path.

\[
\text{Control Effectiveness} = \frac{N \text{ (Control caught the error)}}{N \text{ (Opportunities for control to catch the error)}}
\]
RT Care-path

Analysis of controls against human error in RT

<table>
<thead>
<tr>
<th>Control</th>
<th>Type</th>
<th>Ownershi p</th>
<th>Traceable</th>
<th>Auditable</th>
<th>Specific</th>
<th>Indep’ent</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat 1: Conflicting bladder information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics pre-treatment checklist</td>
<td>Safeg’d</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1 / 5</td>
</tr>
<tr>
<td>MD reviews and approves setup</td>
<td>Safeg’d</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>0 / 4</td>
</tr>
<tr>
<td>MD day/week image review</td>
<td>Safeg’d</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>0 / 4</td>
</tr>
<tr>
<td>Physics weekly chart check</td>
<td>Safeg’d</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>4 / 4</td>
</tr>
</tbody>
</table>
Hypothesis: Drawing on a practitioners guide, healthcare professionals in Scotland will be able to facilitate a Bowtie Analysis of a significant adverse healthcare event to an acceptable quality standard with no more than 6 hours face-to-face training and no more than 4 hours 1-1 support from a specialist.
Summary and Take-aways

- Healthcare relies on many Controls to protect patient safety
 - “layers of protection” “protective measures” “checks and balances” “safeguards” “safety critical elements”
- Controls can be of different types, depending on the protection provided;
 - “Barriers”; “Key Safeguards”, “Safeguards”.
 - Technical; Operational; Organisational
 - There are few full “Barriers” in healthcare.
 - Though there should be many protecting against errors using equipment
- Bowtie Analysis offers a powerful and accessible means of understanding and assuring the Controls relied on in healthcare.
 - Understanding how good those controls really are;
 - Understanding how they fail, and how to protect against failure;
 - Knowing where responsibility for the performance of controls lies;
 - Recognising how different stakeholders can contribute to control failure.
- Customisation is needed when applying BTA to healthcare.
 - Don’t be seduced by the apparent conceptual simplicity
 - Don’t jump into drawing diagrams too early –
 - Take time to think and understand the risk space.
 - Barrier quality criteria discriminate between Barriers, Key Safeguards and Safeguards
- Bowtie Analysis can be used both prospectively (in planning and design) and retrospectively (in incident investigations)
Bowtie Analysis – Industry Best Practice

Centre for Chemical Process Safety (CCPS)/ Energy Institute (EI)
 – Concept Book: “Bowties for Risk Management”

Chartered Institute of Ergonomics and Human Factors (CIEHF)
 – White paper: “Human Factors in Barrier Thinking”
 – www.ergonomic.org.uk
Thank you for your attention

Any Questions?

ron@ronmcleod.com
www.ronmcleod.com