
AI for significantly lower dose  
and improved image quality1

CT 5100 – Incisive Precise Image

Overview
Philips Precise Image is a novel Philips approach that uses  
Artificial Intelligence (AI)* for images with an appearance that  
more closely resembles that of typical filtered back projection  
images while retaining the noise-reduction capabilities of advanced  
iterative reconstruction methods. This provides high-quality images  
with a familiar appearance, and at low dose.

Background
Filtered back projection (FBP) was the industry standard 
for CT image reconstruction for decades. While it is a 
very fast method, FBP is a suboptimal algorithm choice 
for poorly sampled data or for cases in which noise 
overwhelms the image signal, as is the case with low-
dose or tube-power–limited acquisitions. Over time, 
incremental enhancements have been made to FBP to 
overcome some of its inherent limitations.

Philips previously introduced a hybrid approach 
(iDose4) and a model-based approach (IMR) to iterative 
reconstruction to help personalize image quality based 
on individual patient needs at low dose. When used in 

combination with the advanced technologies of Philips 
CT systems, iterative reconstruction has provided a unique 
approach to managing important factors in patient care, such 
as imaging at low energy, low radiation and low dose.
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    Acquires data from routine-dose clinical scans.

2.   Generates low-dose scan data from the  
    routine-dose data by a sophisticated low-dose   
    simulation technique that accurately models both  
    photon and electronic noise in low-dose scans.2

3.   Reconstructs routine-dose scan data with  
    a traditional FBP technique.

4.   Trains the CNN to reproduce the image  
    appearance of the routine-dose FBP images  
    with low-dose scan data.
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Figure 1  The training process for Precise Image AI reconstruction.

How Precise Image trains neural networks
Precise Image follows a supervised learning process to train a convolutional neural network (CNN) in a specified manner.

Traditional algorithms for iterative reconstruction  
typically penalize noisy images in some fashion,  
usually through a function of differences between 
neighboring voxels in the image. While effective in 
reducing noise, these penalty functions can produce 
an image appearance or noise texture that differs 
substantially from the appearance of traditional FBP 
images, which have been familiar to many radiologists 
over the years. This non-standard image appearance is 
a significant barrier to adoption of the technology for 
lowering dose across a range of clinical applications. 
While Philips IMR has addressed the computational 
burden of model-based reconstruction and its effects on 
reconstruction time, computational burden has remained 
an issue for many manufacturers.

Now AI has provided the advances that make  
possible the next level of dose-reduction technologies, 
combining low dose with more familiar image appearance. AI 
deep-learning reconstruction is trained to quickly  
yield low-noise images from low-dose scans by comparing 
them to conventional-dose images in a supervised  
AI learning process. This supervised learning allows for  
an image with a noise texture that more closely resembles 
a typical FBP image, while retaining the noise-reduction 
capabilities of iterative reconstruction methods. 

CT Smart Workflow
Precise Image is one of the many AI-enabled tools of Philips CT Smart Workflow, 
which includes AI that is deeply embedded into tools clinicians use every day 
to be able to apply their expertise to the patient, not the process.
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AI-enabled image reconstruction
Philips Precise Image is the newest, 
most robust method of Philips CT 
image reconstruction, using recent 
technological leaps in AI. Precise 
Image is a reconstruction technique 
that uses a trained deep-learning 
neural network. Precise Image 
offers fast AI reconstruction with all 
reference protocols reconstructed 
in under a minute while maintaining 
the conventional appearance of  
FBP images. 

A closer look at deep learning 
Deep Learning is a subcategory of machine learning and 
AI. A deep neural network (DNN) is an artificial neural 
network with artificial neurons or nodes arranged in 
multiple layers between the input and output layers of 
mathematical manipulation. Complex DNNs, such as those 
of Precise Image, have many layers and the ability to model 
complex non-linear relationships. The design of a DNN acts 
as the foundation that will allow the network to achieve 
its optimization target in an efficient manner. With Precise 
Image, the network was designed to address the specific 
challenges of image reconstruction and has optimized the 
number of nodes and layers within the network in a way  
that addresses the need for reduced latency and fast 
runtime while solving the complex optimization challenge. 

Training the neural network 
While a well-designed DNN presents a great deal of promise 
in solving complex optimization problems, it is important to 
realize that it is only as good as the training with which it has 
been provided. Correctly done, a supervised training strategy 
involves assembling a set of inputs and outputs that provide a 
sufficient sampling of the problem space to be solved. A well-
reasoned and thorough approach at this point is critical for 
achieving robustness of the network. To train Precise Image 
neural networks, we begin with routine-dose scans with a 
clinically desired image appearance. From there, low-dose 
scan data is simulated in a way that accurately models both 
photon and electronic noise.  

The network is then given the task of replicating the image 
appearance of the routine-dose images from the low-dose 
input. By training the networks in this way, they are more 
robust to the variety inherent in CT from factors such as 
applied radiation dose, patient size and patient anatomy.

Validating the neural network 
Trained Precise Image neural networks are validated using 
patient data obtained with a variety of scan parameters 
from a diverse population. Philips begins by providing  
low-dose data simulated from routine-dose scans as input 
to the neural networks. The resulting low-dose images 
of Precise Image are compared to routine-dose images 
reconstructed using standard methods. When image quality 
of low-dose images of Precise Image meets or exceeds 
routine-dose standard reconstructions, sufficient training  
of the neural network is confirmed.  

Inference allows for fast  
clinical workflows 
Once networks have been trained, the weights of the nodes 
and layers of the DNN are fixed. This means new inputs in 
the form of patient data can be rapidly processed to support 
high-throughput clinical workflows with the improved diagnostic 
confidence delivered by Precise Image. With the smart design of 
the network as the foundation and the robust training complete, 
Precise Image delivers incredibly fast AI based reconstruction 
with all reference protocols reconstructed in under a minute.

Figure 2  Precise Image allows for average reconstruction times of 30 seconds or 
less for common protocols.
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Noise-power spectrum
A common complaint with iterative reconstruction images 
is that the noise texture differs significantly from FBP 
images. Precise Image is trained to reproduce the noise 
texture of FBP, while at the same time delivering significant 
noise reductions. An established metric for quantifying 
noise texture is the noise-power spectrum (NPS). For this 
measurement, a 30 cm water phantom was scanned at 300 
mAs, and again at 100 mAs. Images for Precise Image were 
generated from the 100 mAs scan with increasing noise 
reduction to create images with high image quality and 
reduced noise. A series of normalized NPS values were then 
computed for each of the images for Precise Image, as well 
as for the high-dose FBP image (Figure 3).

Going beyond phantom studies to clinical data
Philips Precise Image has been extensively tested on both phantom and clinical data. 
Many general image quality metrics are computed using phantom images. However, 
Precise Image uses primarily clinical images in the training procedure, rather than 
phantom images, to ensure that networks are not trained to simply give good results 
on performance phantoms, but to provide improved clinical images. Nevertheless, 
these clinical benefits can also be measured on traditional phantoms with excellent 
results, as shown in the following sections.

Figure 3 Normalized noise-power spectrum measurements from  
a 30 cm water phantom.

Figure 4  Resolution expressed as modulation-transfer function comparison 
of FBP and AI-enabled reconstruction.

MTF curve

A nearly constant normalized NPS can be maintained  
with Precise Image – regardless of the magnitude of  
the noise reduction – that closely matches the NPS given  
by FBP reconstruction. Thus, image noise texture can  
be customized to closely match that of FBP images, even  
for low doses and strong levels of noise reduction (Figure 4).

NPS curve
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Low-contrast detectability 
A low-contrast detectability (LCD) test is an established 
method for measuring the dose reduction capabilities of 
reconstruction algorithms. A human or model observer 
is presented with many different noisy images, some 
containing a known low-contrast object and some with 
no object present, and for each image the observer must 
decide if the object is present or not. Success at making  
the correct determination for each noisy image is measured, 
and these scores can be used to derive a detectability index 
(d-prime) that reflects the statistical success of detecting  
the object with a given dose and reconstruction method.  
A d-prime = 0 corresponds to no better than random 
guessing (AUC = 0.5), while a d-prime = 4.38 corresponds  
to nearly perfect detectability (AUC = 0.999). “AUC” is the 
area under the receiver operating characteristic curve  
and is a measure of how well a system can discriminate 
between two categories.

The LCD test for Precise Image uses the MITA low-contrast 
phantom CT 189 and focuses on the 10 mm diameter,  
3 HU contrast pin. The model observer is a channelized 
Hotelling observer (CHO) with 3-DOG channels, as 
described in the IQmodelo tool.3  We use 200 image pairs 
(object present, object absent), and compare the d-prime 
of FBP at a dose of 10 mGy to Precise Image at 4 mGy 
and 2 mGy (60% and 80% dose reduction, respectively). 
Example images can be compared. 

Results of the LCD test show detectability with 
Precise Image at 4 mGy is more than 80% better  
than FBP at 10 mGy. Detectability with Precise Image  
at 2 mGy is more than 43% better than FBP at 10 mGy. 
This test shows that with Precise Image, users can get 
both significant dose reduction and greatly improved 
low-contrast imaging at the same time, all while retaining 
a more traditional noise texture than with other recent 
reconstruction techniques.



Figure 6  Image-quality ratings for Precise Image reconstructed at 50% of the routine dose were higher than those 
for iDose4 images reconstructed at 100% of the routine dose.

A team of experienced radiologists reviewed images 
of the chest, abdomen and pelvis from 40 patients using 
iDose4 and Precise Image. Both image sets for each patient 
were rated for diagnostic confidence, sharpness, noise 
level, image texture and artifacts on a 5-point Likert scale, 
where 1 was the worst and 5 was the best. All scans were 
performed at routine dose levels, and iDose4 images were 
reconstructed at the acquired dose. Images using Precise 
Image were reconstructed at 50% of the routine acquired 
dose using low-dose simulation techniques. 

For each attribute assessed, ratings from the two image 
sets were compared using a two-sample Welch’s t-test 
(α=5%) to check for statistically significant differences 
in the ratings. Results showed an improvement in each 
attribute with images from Precise Image reconstructed  
at 50% of the acquired dose (Figure 6).  

Precise Image improves diagnostic confidence at half the dose

5

4

3

2

1

0
Sharpness Noise level Image texture Artifacts

iDose4

Precise 
Image

Clinical studies and example images

iDose4 6.6 mSv Precise Image 3.3 mSv  iDose4 7.4 mSv Precise Image 3.7 mSv 

Clinical image comparisons

6



Conclusion
Precise Image offers a significant advance in the speed of CT image reconstruction at low  
dose, producing images with a noise texture that more closely resembles a typical FBP image. 
Results of the clinical evaluation demonstrated that images reconstructed with Precise Image offer  
a significant advance in CT image reconstruction at half the dose, compared to iDose4 images.

  iDose4 5.1 mSv  Precise Image 2.6 mSv iDose4 1.4 mSv Precise Image 0.7 mSv

 iDose4 1.8 mSv Precise Image 0.8 mSv Precise Image CTA

iDose4 5.4 mSv Precise Image 2.6 mSviDose4 1.5 mSv Precise Image 0.75 mSv

Click here for more information on the CT 5100 – Incisive
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https://www.philips.com/healthcare/product/728144-5100/ct-5100-incisive-728144-5100-computed-tomography-scanner
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 * We embrace the following formal definition of AI (source: HLEG definition AI)  Artificial intelligence (AI) systems are software (and possibly also  
 hardware) systems designed by humans that, given a complex goal, act in the physical or digital dimension by perceiving their environment through data  
 acquisition, interpreting the collected structured or unstructured data, reasoning on the knowledge, or processing the information, derived from this data  
 and deciding the best action(s) to take to achieve the given goal. 

 AI systems can either use symbolic rules or learn a numeric model, and they can also adapt their behavior by analyzing how the environment is affected  
 by their previous actions. As a scientific discipline, AI includes several approaches and techniques, such as machine learning (of which deep learning  
 and reinforcement learning are specific examples), machine reasoning (which includes planning, scheduling, knowledge representation and reasoning,  
 search, and optimization), and robotics (which includes control, perception, sensors and actuators, as well as the integration of all other techniques into  
 cyber-physical systems). 
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