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Overview 

This document describes in detail a rational, objective, and scalable methodology to assess the 

positive contributions to health effects offered by publicly traded companies related to medical 

devices.   

 

Assessment of companies that manufacture and commercialize medical devices  

 

 Benefits for medical device companies are estimated by getting the list of medical devices 

related to the top 20 causes of mortality and 20 top causes of disability (Table 1) for each 

medical device company. A medical device is an item that is used as an auxiliary instrument to 

provide proper care either by measuring health metrics, assisting in delivering drugs or medical 

therapies without having a pharmacological or therapeutical effect themselves, or by providing 

a therapeutic action on their own (like brackets, orthopedic instruments, ultrasound diagnostic 

medical devices, pacemakers or dialysis machines). 
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Table 1. Top 20 worldwide causes of mortality and disability in 2020 (World Health Organization) 

Top 20 worldwide causes of mortality 
(2020) 

Top 20 worldwide causes of disability 
(2020) 

Ischemic Heart Disease (IHD) Low back pain 

Stroke Major depression disorder 

Chronic Obstructive Pulmonary Disease 
(COPD) 

Musculoskeletal disorders 

Lower Respiratory Infections Neck pain 

Neonatal Conditions Migraine and anxiety disorders 

Tracheal, Bronchial and Lung Cancer Chronic Obstructive Pulmonary Disease 
(COPD) 

Alzheimer’s and other dementias Influenza and upper respiratory infections 

Diarrhea and gastrointestinal diseases Drug use disorders 

Diabetes Diabetes 

Chronic Kidney Disease Osteoarthritis 

HIV/AIDS Asthma 

Colorectal Cancer Lower Respiratory Infections 

Tuberculosis Alzheimer’s and other dementias 

Hypersensitive Heart Disease Stroke 

Stomach Cancer Ischemic Heart Disease (IHD) 

Other cancers (small cell cancer, multiple 
myeloma, leukemia, etc.) 

Cancer of any kind 

Neonatal encephalopathy Diarrhea and gastrointestinal diseases 

Malaria, Zika, Dengue Fever, and other 
infectious diseases transmitted by 
mosquitoes 

Chronic Kidney Disease 

Congenital diseases Parkinson’s disease 

Maternal mortality Malaria, Zika, Dengue Fever, and other 
infectious diseases transmitted by 
mosquitoes 

 

Once these medical devices are listed per company, then we divide medical devices into the 

following categories: 

- Class I devices are subject only to general controls. They typically present the lowest 

potential for harm and are simpler in design than Class II or Class III devices. Class I 

devices include elastic bandages, examination gloves, and hand-held surgical 

instruments. 
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- Class II devices are those for which general controls alone are insufficient to 

provide a reasonable assurance of safety and effectiveness. In addition to complying 

with general controls, Class II devices are also subject to special controls identified by 

the agency, including special labeling requirements, performance standards, and post-

market surveillance. Class II devices include powered wheelchairs, infusion pumps, and 

surgical drapes. 

- Class III devices generally are those for which insufficient information exists to 

determine that general or special controls are sufficient to provide a reasonable 

assurance of safety and effectiveness. Class III devices include replacement heart 

valves, pacemakers, silicone gel-filled breast implants, and implanted cerebellar 

stimulators. 

 

An excellent tool to assist in classifying medical devices is the database for medical devices 

analyzed and approved for use in the United States of America prepared by the U.S. Food and 

Drug Administration available at:  

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm  

 

After classifying medical instruments for every company using these three categories, the 

research group assigns a medical effectiveness value for each device which is usually listed in a 

percentage of the patients treated with the medical device that achieve a particular health 

outcome, compared to a placebo in monotherapy in a cohort study1.    

The preferred way to determine the medical effectiveness of medical devices is by reviewing 

peer-reviewed journal articles and clinical effectiveness studies for therapies related to the 

medical devices under analysis. However, one of the biggest challenges in this methodology is 

that there is almost no objective and official information for clinical effectiveness for Class I and 

Class II medical devices. Additionally, this information is scarce for Class III devices. Peer-

review research articles state the clinical efficacy of pacemakers, heart valves, and dialysis 

machines because they are directly related to preserving human life. Still, there are no studies 

 
1. 
 We assume that differences in genotypes in human populations worldwide are not as drastic as significantly 
changing a drug's effectiveness. 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/classification.cfm
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or official reports on the overall medical effectiveness or influence of bandages, surgical 

instruments, and devices like glucometers in treating specific health outcomes. When 

information from peer-reviewed scientific articles is not available, a medical panel could be 

assembled to offer an expert opinion about the effectiveness of different medical therapies. 

These initial effectiveness values should always be considered as preliminary. According to the 

Quality of Information Scorecard Protocols described in Appendix I, they should be penalized 

when analyzing uncertainty.  

 

There is no clinical effectiveness information for the most usual combinations of medical 

devices and drugs, only the effectiveness of monotherapy. Therefore, only monotherapy 

effectiveness with its corresponding confidence intervals is used to estimate health benefits to 

have an objective measure of the benefits of every specific medical device.   

 

Information about average mortality, hospitalizations, and sick days among people with a 

particular health outcome related to each medical device is collected to create models to 

estimate benefits. Then the number of patients under treatment by each medical device is 

calculated by getting the overall number of medical devices sold worldwide or at least in the 

most critical major markets (the United States, the European Union, China, India, Japan, 

Indonesia, Russia, Brazil, Pakistan, Nigeria, and Mexico). An alternative method is to use 

revenues and baseline prices for medical devices to estimate the number of medical devices 

sold every year in the major markets of interest. Health benefits will be assessed on an annual 

basis because they are the only ones tied directly to the revenues for that year. Then, we will 

define a primary number of uses for each medical device based on the number of recommended 

users or overall service life for the device. In this way, we can determine the number of patients 

served every year by a medical device. For example, a band-aid or dialysis filter will only be 

used once, and a glucometer is likely to be used 1,500 times during the product's lifetime with 

an average of one use per day.    

 

A medical device might be used for more than one health outcome. Therefore, the average 

percentage of use per medical device for each health outcome should come from medical 



 

5 
 

practitioners in every country to estimate the number of users served for every medical 

outcome.  

 

Suppose worldwide information about the number of medical devices sold is not available. In 

that case, we use financial reports from each company to determine the percentage of revenues 

per medical device family per country. We then use information about the rate of revenues 

related to each kind of medical device and the average price for the medical device in the USA 

to estimate the number of likely patients under treatment in other markets. A simple way is to 

multiply the price for a particular medical device in the USA by a purchase parity index for every 

country or significant market. This will give us an equivalent willingness-to-pay price for a 

specific market with confidence intervals. This procedure compensates for the lack of price 

negotiations for the U.S. health sector. Due to local legislation, some medical devices are 

available in certain countries at a lower price.   

 

The process requires information about treatment effectiveness once a diagnosis occurs. 

Additionally, we get the prevalence and epidemiology for each medical outcome diagnosed by 

the medical device. 

 

The basic process to estimate mortality, hospitalizations, and sick days prevented by the 

company uses all of the information described above to have objective results about the impacts 

of healthcare products by company (Figure 1; Figure 2). 
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Figure 1. Basic process to estimate annual mortality prevented by a medical device company 

 

Figure 2. Basic process to estimate annual sick days prevented by a medical device company 

 

An uncertainty and sensitivity analysis for the benefits of each device is performed using a 

quality of information scorecard for health information that was developed to identify and 

characterize uncertainty for each piece of information in the model. This is used to create 

statistical distributions with variation in a Monte Carlo Analysis; each company's aggregate 
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mean health benefits are reported, and a healthcare ranking for overall global benefits of 

companies is prepared (in descending order of benefits).   

An important assumption is that all healthcare benefits have a functional baseline (they are not 

time-dependent) because people are either doing the therapy to reach a particular health goal 

or not. Adverse health outcomes manifest due to a lack of proper medical treatment.  

 

Example of using this methodology for ultrasound medical devices applied to coronary 

artery disease (CAD) in the United States. 

 

Coronary artery disease (CAD) is an ischemic heart disease that killed approximately 365,914 

individuals out of 18.2 million people with the disease in the USA in 2019. (CDC, 2019; WHO, 

2020). A way to reduce CAD mortality is by detecting this disease in its early stages. This 

diagnosis might lead to changes in the patient's diet, cardiovascular management therapies, or 

a surgical procedure to bypass obstructed coronary arteries.  

 

CAD diagnosis by itself is likely to reduce mortality by 29% compared to undiagnosed people 

(95% Confidence Interval (CI) between 23.5% and 35.3%). This measure of effectiveness comes 

from polling cardiologists and medical experts in hospitals in Boston in the United States 

(Sanchez-Pina, 2021). This mortality reduction effectiveness is used temporarily while 

scientists estimate a more solid value based on a comprehensive assessment of effectiveness 

from medical studies or a wider consultation of the international medical community.  

 

Usage rate for ultrasound medical devices used for cardiovascular diseases comes from field 

clinics and information from the manufacturer of the ultrasound medical devices. As an 

example, if we assume that there are five ultrasound procedures for CAD per day and we 

consider that we need two procedures to make a proper diagnosis and that the clinic or hospital 

works for 260 days/year, then we have a total of 650 cardiovascular diagnosis/device/year. 

Considering effectiveness of 97% for diagnosing CAD, then the potential mortality prevention 

benefits are: 
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Deaths prevented by elective diagnostic ultrasounds per device in the USA=  

0.29*650 procedures/year*0.975*(365,914 CAD deaths/year in the USA/330 million people in 

the USA) = 0.202 deaths prevented/year/medical device (90% CI [0.127, 0.308]). 

 

 

 

 

  



 

9 
 

Appendix I 

Generation of mean values and uncertainty factors used in Monte Carlo Analysis for 

energy efficiency, renewable energies, and healthcare products 

Estimation of averages and coefficients of variation for output parameters in every step of 

processes under analysis 

A common practice for scientific estimations and field data is to report mean values for input 

and output parameters. Most of the time, a measure of dispersion is reported for the mean 

values to include uncertainty. There are several components of uncertainty in scientific or 

technical analysis; some of them are: 

-Variability and stochastic error: The values describing inputs and outputs due to 

measurement uncertainties, process-specific variations, temporal variations, etc. 

-Appropriateness of the input or output flows: An input or output might not perfectly match 

the input or output observed in reality due to temporal or spatial approximations (example: 

Dialysis therapies performed in Mexico in 2015 might be different from dialysis therapies 

performed in Mexico in 2020). 

-Model uncertainty:  The model used to describe the process may be inappropriate (using a 

linear instead of a non-linear relationship in modeling). 

-Neglecting essential processes in the model:  Not all relevant information might be available 

to describe the process entirely. These unknown inputs and outputs are missing in the scientific 

or technical analysis. 

A method to improve data quality was used to estimate uncertainties in a technical life cycle 

analysis by Pedersen Weidema and Wesnaes in 1996. This method proposes a matrix of data 

quality indicators and corresponding coefficients of variation; in this way, the essential 
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uncertainty of a parameter can be adjusted to reflect other sources of variation. The overall 

coefficient of variation is estimated by calculating the square root of the sum of the squares of 

the individual coefficients for each uncertainty source. 

 

(1+ Cv) = exp [ √( [(ln(U1)]2 + [(ln(U2)]2 + [(ln(U3)]2 + [(ln(U4)]2 + [(ln(U5)]2 + [(ln(U6)]2  + [(ln(Ub)]2)  ] 

Where: 

Cv:  Coefficient of Variation 

U1: Uncertainty Factor of Reliability 

U2: Uncertainty Factor of Completeness 

U3: Uncertainty Factor of Temporal Correlation 

U4: Uncertainty Factor of Geographic Correlation 

U5: Uncertainty Factor of Technological Correlation 

U6: Uncertainty Factor of Sample Size 

Ub: Basic Uncertainty Factor 

 

Uncertainty factors are determined by applying a matrix of data quality indicators and a table 

of default uncertainty factors. The matrix of data quality indicators describes qualitative 

characteristics for each one of the categories of uncertainty factors; descriptions are used to 

assign an indicator score of uncertainty. Values for uncertainty factors are determined by 

matching the indicator score of uncertainty from the data quality matrix with its corresponding 

type of uncertainty in the table of default uncertainty factors. A more prominent primary 

uncertainty factor is applied when there is missing information in the data quality matrix. 
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Overall uncertainty estimations are given in a unit process level (for example: tons CO2eq/KWh, 

Price per annual cost of therapy, etc.)   The matrix of data quality and default uncertainty factors 

are shown in tables 3 and 4. 

 

Table 3. Pedigree Matrix used to assess the quality of data sources for medical device/ healthcare 
companies derived from (Pedersen Weidema & Wesnaes, 1996)  
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Level 1 2 3 4 5 Notes 

Reliability Verified data 
based on 
measurements 
or approved 
human clinical 
studies 

Verified data 
based on 
assumptions 
OR non-
verified data 
based on 
measurements 
or animal 
studies 

Non-verified 
data partly 
based on 
qualified 
estimates 

Qualified 
estimate (i.e., by 
health expert) 
Data derived 
from theoretical 
information 
(molecular 
models, genetic 
theory, etc.) 

Non-qualified 
estimate 

Verified means 
published in 
companies' 
public 
environmental 
or health 
reports, official 
statistics, etc.  
Unverified 
means: 
personal 
information by 
letter, fax, or 
e-mail 

Completeness Representativ
e data for 
diverse human 
subjects over 
an adequate 
period to even 
out normal 
fluctuations. 

Representativ
e data from > 
50 % of 
potential 
patient 
genotypes to 
even out 
normal 
fluctuations 
over an 
adequate 
period. 

Representati
ve data from 
only some 
individuals 
(<<50 %) 
relevant to 
health 
outcome 
considered 
OR > 50 % of 
individuals 
but for 
shorter 
periods 

Representative 
data from only 
one individual 
relevant for the 
health outcome 
considered for a 
long time OR 
some individuals 
but from shorter 
periods 

Representativ
eness 
unknown or 
data from one 
individual AND 
from shorter 
periods 

Length of 
adequate 
periods 
depends on 
process/ 
technology/ 
health 
outcome 

Temporal 
Correlation 

Less than 
three years of 
difference to 
our reference 
year 

Less than six 
years of 
difference to 
our reference 
year 

Less than ten 
years of 
difference to 
our reference 
year 

Less than 15 
years of 
difference to our 
reference year 

Age of data 
unknown or 
more than 15 
years of 
difference to 
our reference 
year 

The score for 
processes with 
investment 
cycles of less 
than ten years; 
for other 
cases, scoring 
adjustments 
can be made 
accordingly 

Geographical 
Correlation 

Data from the 
country or 
area under 
study 

Average data 
from a larger 
area in which 
the area under 
study is 
included (for 
example, 
information for 
all of Europe if 
we are 
analyzing only 
Dutch 
patients) 

Data from a 
smaller area 
than the area 
under study 
or 
environmenta
lly similar 
regions (for 
example, a 
province or 
state instead 
of the whole 
country) 

Data from a 
distinctly different 
area of the world 
(Northern Europe 
instead of South 
Western 
Australia, for 
example) 

Data from an 
unknown 
origin in the 
world 

The similarity 
is expressed in 
terms of 
environmental 
or health 
legislation. 
Suggestion for 
grouping:  
- North 
America, 
Australia; 
- European 
Union, Japan, 
South Africa;    
-South 
America, North 
and Central 
Africa, and the 
Middle East;  
Russia, China, 
Far East Asia 
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Health or 
Biological 
Correlation 

Data from 
medical device 
companies or 
government 
labs related to 
clinical studies 
for the same 
therapy and 
identical 
health 
outcomes 

Data from 
medical device 
companies or 
government 
labs related to 
clinical studies 
for similar 
drugs or 
molecules for 
identical 
health 
outcomes 

Data from 
medical 
device 
companies or 
government 
labs related 
to clinical 
studies for 
similar drugs 
or molecules 
for similar 
health 
outcomes 

Data from 
medical device 
companies or 
government labs 
related to lab 
studies for 
similar drugs or 
therapies for the 
same health 
outcomes 

Data from 
medical device 
companies or 
government 
labs related to 
lab studies for 
similar drugs 
or therapies 
for the similar 
health 
outcomes 

Examples of 
different health 
outcomes:   - 
Cardiovascular 
Disease and 
Parkinson’s 
Disease 
Examples of 
similar health 
outcomes:  
Myocardial 
arrest and 
Stroke 
 
Examples of 
similar drugs:  
aspirin and 
aspirin 
enriched with 
caffeine. 
Natural Insulin 
and artificial 
cell openers 
for glucose 

Sample Size >100 >20 >10 ≥ 3 Unknown Sample size 
behind a figure 
reported in the 

information 
source. 
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Table 4. Default uncertainty factors applied together with a matrix of data quality indicators 
 

Indicator 
Score 

1 2 3 4 5 

Reliability 1.00 1.05 1.10 1.20 1.50 
Completeness 1.00 1.02 1.05 1.10 1.20 

Temporal 
Correlation 

1.00 1.03 1.10 1.20 1.50 

Geographical 
Correlation 

1.00 1.01 1.02 1.05 1.10 

Further 
Technological 

correlation 

1.00 1.10 1.20 1.50 2.00 

Sample size 1.00 1.02 1.05 1.10 1.20 
 

The value (1 + Cv) is equal to the square of the geometric standard deviation (σg2) for the 

lognormal distribution. This is important because several reports in the field of risk assessment 

and impact pathway analysis have shown that the lognormal distribution seems to be a more 

realistic approximation for the variability in fate and effect factors than the normal distribution 

(Hofstetter, 1998). Because emission measurements may not show negative values, the 

lognormal distribution is also applied to life-cycle inventory data. The lognormal distribution is 

assumed by default to all process steps in food production unless reliable field data indicates 

otherwise. Suppose actual field measurements or reliable and verified data suggest that a 

parameter has a normal distribution. In that case, the coefficient of variation is determined by 

dividing the sample standard deviation by the sample mean.   

 


