Overview FOD methods

Update on decay method for slotted FOD

WPC1903 September 2019

FOD methods for Qi

	Impedance measurement	Advantages Disadvantages	Power measurement	Advantages Disadvantages
Version	Before power transfer Disconnected load	Not during power transfer Excludes uncertainty of load Indirect relation to FO power	During power transfer Connected load	During power transfer Uncertainty of load Direct relation to FO power
V1.0			Rectified power	Simple implementation Uncertainty of internal losses not considered
V1.1			Power loss Ploss = PTx - PRx Rx→Tx: received power	Internal power losses included Synced measurements Insufficient resolution for >5W
V1.2	Q factor Rx→Tx: ref Q factor	<i>Tx design differences Influence of Rx distance</i>	Calibrated power loss Rx→Tx: received power + type Calibration at start of power transfer	Relative values → better resolution Calibration depends on FO absence before power transfer
V1.3 draft	Q factor + F resonance Rx→Tx: ref Q factor Rx→Tx: ref f factor	Combined info Enhanced protocol support EFOD: Porting to reference Influence of Rx distance	Calibrated power loss multipoint at start and during power to include multiple loads	Better resolution over whole power range Increased risk: calibration while FO is present

Take-aways from Qi FOD methods

- Q factor method before power transfer
 - more accurate than power loss
 - uncertainty of load is excluded
- Power loss method during power transfer
 - Uncertainty reduction by calibration
 - Dependent on FOD before power transfer
- Protocol enhancements in v1.3 draft
 - Reference resonance shift in addition to Reference Q factor
 - Multipoint calibration for power loss
 - Protocol enhancements Re-start at FOD

- Further improvements of pre-power methods addressed by EFOD taskforce
 - Porting of measurements by Tx design to reference Tx
 - Combination Q-factor and resonance shift
 - Currently not described in draft v1.3

- Insufficient resolution / no prove for safe power > 15W
- No compensation for different positioning of Rx (XY + Z)

Slotted FOD (2017, May 5)

- Long FOD & Comm. slot (load disconnected)
 - Prepare for FOD (Rx communicates boundaries)
 - Find optimal parameters for FOD measurement and store them
 - Apply stored parameters and take multiple measurements
 - Compare measurements to boundaries
 - Determine safe maximum field (which could be zero)
- Power transfer (load connected) e.g. 100ms
 - Apply safe power signal

- Short FOD Slot (load disconnected) e.g. 1ms
 - Apply stored parameters for fast FOD
 - At FOD trigger (e.g. by exceeding threshold multiple times) → Long FOD slot
 - Note: position change of device may also cause FOD trigger
- Short Comm. slot (load disconnected) e.g. 1ms
 - Communicate control information to adjust power
- Flexible use of short slots, e.g.
 - Alternating FOD, Communication
 - Combined FOD + communication in single slot

Medium power proposals for FOD

All proposals with disconnected load to exclude uncertainty of load

Method	PTx only before Rx placement	PTx+PRx Long slot ~100ms "Before" power transfer	Advantages Disadvantages	PTx+PRx Short slot <1ms "During" power transfer	Advantages Disadvantages
	No influence of Rx	Absolute measurements considering influence of Rx	High accuracy Multiple parameters Long interruption of power transfer	Relative measurements in given constellation	Calibration depends on FO absence in long slot Short interruption of power transfer
Q factor frequency domain	Expected Q factor of Tx	Q curve Rx→Tx: frequency dependent Q curve Calibration to references	Accurate method Compensation for distance Allows variation Tx and Rx coils Indirect relation to FO power	Q factor for single frequency determined during long slot	Interruption 1ms Need to swap to predetermined frequency
Decay time domain	Not proposed yet	Decay curve Not proposed yet	Allows for fixed frequency design TBD	ΔDecay Multipoint calibration (new)	Interruption 100us No predetermined setting
Power loss	Expected power loss in Tx	Power loss (disconnected load) Rx→Tx: R _{friendly} + U _{Rxcoil}	Direct relation to FO power Compensation for distance / offset Complex compensation	ΔPower loss (disconnected load) for single setting determined during long slot	Interruption 1ms Need to swap to predetermined setting

From Bosch proposals

FOD via Q-Factor Measurement at Resonant Frequency

At the transmitter (PTx), while power is **not** being transferred...

 Q-Factor (k_Q) is calculated as the ratio of the peak tank circuit voltage (V_{AMPLITUDE}) versus the the exciting voltage (V_{RAIL}):

$$k_{Q} = V_{AMPLITUDE} / V_{RAIL} \qquad \dots (1)$$

 A maximum k_Q found within the expected frequency range together with the corresponding frequency, represent the resonant frequency parameters (k_{Q_RES}, F_{RES}) of the system.

From Bosch proposals

Quality and Frequency Limits - Look-up-Table comparison

- The measured resonance frequency parameters (k_{Q_RES}, F_{RES}) are compared to predefined limits for a given transmitter and also for combinations of transmitter+receiver
- Changes in $k_{Q_{RES}}$ and F_{RES} over time indicate changes in the system:
 - FO present
 - Change in PRx vs PTx alignment (Z, or in X or Y)

If $(k_{Q_{RES}}, F_{RES})$ are ..

- Within PTx+PRx region limits → Power transfer can proceed (preceeded by PRx – PTx communications)
- Within PTx region limits \rightarrow Standby
- Outside limits → FOD is present

From joint Philips Bosch proposal @WPC 1901

Q-Factor FOD method in long slot / short slot scheme

From Philips proposal @WPC 1902

Short slot approach (1/2)

- Short-circuit the resonant tank with the low-side H-bridge switches
- Signal will decay under the influence of:
 - PTx system resistance
 - Friendly metal
 - Foreign objects
- Load basically 'disconnected' because the rectifier in the PRx is no longer conducting
 - Valid when: DC bus voltage > voltage induced in PRx coil
 - No influence of PRx coil current on PTx signal decay
- Short FOD slot duration: 100 µs during initial testing

From Philips proposal @WPC 1902 Short slot approach (2/2)

- Measure the decay of PTx resonant tank voltage during a short FOD slot
- Improve accuracy by averaging over multiple short FOD slots
- Compare average decay against threshold

No FO

Small coin as FO

Piece of copper sheet as FO

Update Decay method

- Ensure to measure at time that load is disconnected
 - Start decay measurement after 2 cycles
- Calibration
 - Decay depends on operating point
 - Apply (auto)calibration for multiple operating points
- Calculations
 - Safe operation by limiting coil current
 - Related to ESR offset (ΔR) of resonance tank
 - to limit potential power dissipation in FOD

Decay method

$\Delta Decay caused by FO$ Example: L=28µH, f=100kHz, R=250m Ω , ΔR (R_{FO})=50m Ω , Q=70, ΔQ =11.7

Multipoint calibration for Δdecay

Calculations

Decay:	$\frac{U(t)}{dt} = e^{-\frac{\omega}{2Q}t}$	<i>U</i> (0)	Resonance tank Voltage at start of decay measurement		
7	U(0)	U(t)	Resonance tank Voltage at time <i>t</i>		
	2	t	time from start of decay measurement		
with $\Omega = \frac{1}{2}$	$\frac{U(t)}{U(0)} = e^{-\frac{\omega^2 RC}{2}t}$	Q	Q factor		
ωRC		f	resonance frequency $f = \omega/2\pi$		
	$\frac{U(t)}{U(0)} = e^{-\frac{\pi}{Q}n}$	λ	wavelength = period of a resonance cycle $\lambda = 2\pi/\omega$		
Over n cycles: $t = n\lambda$		n	number of wavelengths for decay measurement		
		С	capacitor of resonance circuit		
2	$\frac{U(t)}{U(0)} = e^{-2\pi^2 R C \frac{n}{\lambda}}$	R	ESR of resonance circuit		
with $Q = \frac{\lambda}{2 - R^2}$		R_{FO}	ΔR caused by FO		
$= 2\pi RC$		Ι	rms current in Tx coil		

For fixed *C*, *R* can be calculated: With measured *f* and *Q*:

$$R = \frac{1}{2\pi f Q C}$$

With configured *n* and measured λ : $R = \frac{-\lambda}{2\pi^2 nC} \ln \left(\frac{U(t)}{U(0)} \right)$

Safe operation:

Limit primary coil current by estimation of P_{FO}

$$P_{FO} = I^2 R_{FO} = I^2 \Delta R \rightarrow I^2 \leq \frac{P_{FOmax}}{\Delta R}$$

Slotted FOD for Δ decay in short slots

Conclusions

- Proposals for medium power
 - Learnings from Qi
 - Measure at disconnected load
 - Calibrate power loss
 - Add more parameters
 - Accurate FOD in long slot
 - Multiple parameters: e.g. Q, f, U_{Rxcoil}, etc.
 - Compensate for different offset and distance positions
 - Calibration routines to compensate for design variations
 - FOD in short slot
 - Predefined settings, e.g. frequency and/or
 - Calibrated relative measurements, e.g. Δdecay

- Multiple methods enables
 - Design freedom
 - Increased reliability
 - Smart combinations, e.g.
 - Accurate Q curve method in long slot
 - Fast Δ decay method in short slot

Todo

- Upgrade Decay method for long slot
 - Compensate for position of Rx coil on Tx coil
 - Additional parameters (resonance wavelength)
 - Influence of component temperature
 - Long slot may require cool down-period
 - Measure R_{on} of MOSFETS

