

Slotted FOD using a triple Induction Balance for the hidden Tx case Combining FO detection and NF Communication

Will Ettes, Pascal Lebens, Klaas Lulofs, Friso Rietstra & Jan Draak Philips Research Eindhoven, The Netherlands 13 -02 - 2019 innovation # you

Content of the presentation

- From WPC 1904
 - Induction Balance principle
 - Triple Induction Balance set-up
 - Power chain cordless kitchen (1)
 - Triple Induction Balance system
 - Picture & Wave forms 1st experimental setup
- NFC & FOD
 - FOD coils & NFC antenna assembly
 - Power chain cordless kitchen (2)
 - Wave forms with NFC & FOD slots
 - Experimental results
- Conclusion

From WPC 1904:

- Philips proposed a FOD method, based on a triple Induction Balance, that can utilize a FOD slot
- The FOD slot alternates with the communications slot as described in the joint specification

Next step: NFC + FOD

- To combine slotted FOD with slotted NFC
- To demonstrate slotted FOD, based on the Induction Balance (IB) principle, in combination with NFC

From WPC 1904: Induction Balance Principle

- **\$**
- Main magnetic field created by Tx coil

- Flux lines are bent due to the foreign object because:
 - Local change of permeability
 - Eddy currents induced in the Foreign Object
- Difference in flux density can measured by an Induction Balance

From WPC 1904: Triple Induction Balance set-up (1)

To avoid noise pick-up and a-symmetry:

- Terminals of FO detection coils L_1 to L_6 moved to centre of the Tx coil
- The current through the FO detection coils is measured, not the voltage across the terminals

From WPC 1904: Power Chain for cordless kitchen

6 February 16, 2020

From WPC1904: Wave forms 1st experimental setup

S1 open

No NFC & FOD slot's yet, but:

- Inverter is active
- U_{dc} = 50 V -> constant FOD field
- PRx connected

•
$$F_{res} = 25 \text{ kHz}$$

- $F_{op} = 50 \text{ kHz}$
- Power transfer at F_{op} = 50 kHz but has small effect on amplitude of I _{Tx}
- No NFC carrier
- Offset nulling and FOD functionality was demonstrated

From WPC 1904: Triple Induction Balance system

From WPC1904: Picture 1st experimental setup

NFC & FOD: FOD coils & NFC antenna assembly (1)

Magnetic coupling exist between FOD coils & NFC antenna -> Cross talk to be expected!!

- + 40 mm wooden "counter top" spacer
- + NFC Antenna
- + Triple induction balance FO detection coils
- + Ferrite sheet
- Al shield + spacer + Spiral Tx coil (because no ferrites used yet)

Ferrite sheet to avoid de-tuning & damping of the NFC link by the Tx coil

11 February 16, 2020

NFC & FOD: Power Chain for cordless kitchen

S1 = closed

NFC & FOD: Wave forms with NFC & FOD slots

During NFC slot:

- Inverter inactive
 - No power transfer from PTx to PRx
- NFC between PTx and PRx

Between NFC & FOD slot

- Inverter active
- Power transfer at $F_{op} = 22 35 \text{ kHz}$

During FOD slot:

- Inverter active
- U_{dc} = 50 V -> constant FOD field
- PRx connected
 - F_{op} = 50 kHz
- Power transfer at F_{op} = 50 kHz but
 has small effect on amplitude of I Tx

NFC & FOD: Power Chain for cordless kitchen S1 = open

\$

NFC & FOD: Wave forms with NFC & FOD slots

During NFC slot:

- Inverter inactive
- No power transfer from PTx to PRx
- NFC between PTx and PRx

Between NFC & FOD slot

- Inverter inactive
- No Power transfer
- $F_{res} = 25 \text{ kHz}$

During FOD slot:

- Inverter active
- U_{dc} = 50 V -> constant FOD field
- PRx connected
- F_{op} = 50 kHz
- Power transfer at F_{op} = 50 kHz but has small effect on amplitude of I _{Tx}

FOD & NFC: Experimental results (1)

FOD & NFC: Experimental results (2)

No FO

With FO

Conclusion

- Philips demonstrates a FOD method, based on the Induction Balance principle, that utilizes FOD slot's
- In the current test setup the FOD slot alternates with the NFC slot with a repetition rate of F_{mains}
- The FOD slot repetition rate can be negotiated to alternate with the NFC slots as described in the joint specification
- The FOD coils and the NFC antenna can combined in a single assembly

