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1. Introduction 
 
Several biological studies produce genomic annotation data such as mapping statistics, 
quantitative browser tracks, variants, genome functional annotations, gene expression data and 
Hi-C contact matrices. These are currently represented in different formats such as VCF, BED, 
WIG, etc., leading to issues with interoperability and the need for frequent conversions between 
formats in order to visualize this data. Furthermore, the lack of a single format has stifled the work 
on compression algorithms and has led to the widespread use of suboptimal compression 
algorithms based on gzip (e.g., BCF [1], BigWig [2], etc.) that do not exploit the significant 
structure present in these formats. These algorithms do not exploit the fact the annotation data 
typically comprises of multiple fields (attributes) with different statistical characteristics and instead 
compress them together. Thus, while these algorithms support efficient random access with 
respect to genome position, they do not allow extraction of specific fields without decompressing 
all the attributes. While there have been some works [3,4] on decomposing the data into attributes 
and compressing them independently, there is limited adoption due to lack of standardization. 
These works are unable to achieve optimal compression because of reliance on a small set of 
standard compressors and are limited to only one type of annotation data. Furthermore, the 
existing solutions lack in support for features such as selective encryption and ability to link 
multiple annotation datasets with each other and with sequencing data. Many of these specialized 
solutions are based on disk-based array management tools like TileDB and HDF5 which provide a 
good base framework but lack several high-level features like support for metadata, linkages and 
attribute-specific indexing. 

 
We propose a unified file format capable of storing the annotation data, while allowing support for 
functionalities such as fast query, random access, multiple resolutions (zooms), selective 
encryption, authentication, access control and traceability. The format achieves significant 
compression gains over gzip by separating different attributes of the data and allowing the use of 
specialized compressors for these. Finally, the format supports metadata and linkages to the 
sequencing data associated with the annotations as well as linkages to other annotation data from 
the same study, allowing seamless integration with the existing MPEG-G file format for sequencing 
data [5]. 
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The format represents the data as a multidimensional array (tables) with each cell consisting of 
multiple attributes. A single file can contain multiple such tables to support multiple resolutions of 
the same data. Each cell in the table consists of multiple attributes that are compressed separately 
for improved compression and selective access to attributes. The framework supports a variety of 
compressors specialized for different data types. The format also supports compression of one 
attribute using other attributes as side information/context. The format also supports embedding a 
compressor executable within the file format itself, with appropriate security protections. For 
multidimensional arrays, the format also supports additional dimension-specific attributes that 
share the same value for all cells across a dimension.  
 
To achieve efficient random access, the array is divided into chunks. The chunks can be of a fixed 
size or variable size, with an option to use the same chunks for all attributes or not. An index 
allows fast access to any given position in the data by only decompressing the corresponding 
chunk. To support fast random access based on the values of certain attributes, one can also 
include attribute-specific indexes. The format also provides a mechanism for sharing of codebooks 
or statistical models needed for decompression across chunks.  
 
Finally, the format consists of protection (access control) information at multiple levels in the 
hierarchy that allows fine-grained security settings. Similarly, the metadata and attributes allow an 
effective way to link different types of annotation data as well as sequencing datasets. The format 
can be used as a standalone file or as part of an MPEG-G file. Overall, the proposed format 
provides a standardized framework with sufficient flexibility to achieve state-of-the-art compression 
performance on a variety of data types by incorporating the appropriate compression techniques 
for the attributes in question. 
 
 

2. File Format and Technology 
 
In this section, we first introduce some terminology and then describe the different components of 
the file format following a top-down approach. The various features described above are described 
in the relevant components of the file. In Section 2.8, we discuss the integration into a MPEG-G 
file, linkages and access control. In Section 2.9 we describe the decompression process which 
illustrates several of the advantages of the file format. Finally, Section 2.10 discusses methods to 
open the file in edit mode, allowing efficient updates to parts of the file. 

 

2.1 Terminology 

Annotation file: The top-level structure which can consist of multiple tables along with some 
additional metadata and protection information. For example, the multiple tables can be used to 
store the data at multiple resolutions. 

Table: Each table is an independent entity, storing an array consisting of different attributes.  

Attribute: Each cell in a table can store multiple attributes, where each attribute has a specific 
datatype and is compressed using a specific compressor. This allows better compression and also 
selective access to attributes. For example, in a genome functional annotation file, the attributes 
could be chromosome, start position, end position, feature ID, feature name and so on. 

Dimension: Tables can be single dimensional (e.g., genome annotation data, quantitative browser 
tracks) or multidimensional (e.g., Variant call data, gene expression data for multiple samples are 
2-dimensional). Note that single dimensional tables can also hold multiple attributes. See Figure 1 
below for an illustration. 
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Dimension-specific attributes: When the array is multidimensional, the table might store certain 
dimension specific attributes along with the attributes for the main table. Each dimension specific 
attribute can be thought of as being part of a 1-dimensional table. For example, variant data for 
multiple samples can be represented using a 2-dimensional table, with the sample genotypes and 
sample level likelihoods being attributes for the main 2-d array, while the variant position and 
sample name being dimension specific attributes. See Figure 1 below for an illustration. 

Chunk: The attributes in the table are compressed in rectangular chunks to allow efficient random 
access. The chunks can be of fixed size or variable size. An index is stored for efficiently 
determining the position of a specific chunk in the compressed file. 
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Figure 1: Illustration of 1-dimensional and 2-dimensional data with multiple attributes. The 2-
dimensional data contains dimension-specific attributes in addition to the main 2-dimensional 
array. 

 

2.2 Top-Level File Format 
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Figure 2: Illustration of top-level file format. 
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§T1: Annotation file 

Field Brief Description Type 

FileHeader  file_header (§T2) 

FileProtectionInfo Access control policy gen_info (§T3) 

FileMetadata Metadata/Linkage gen_info (§T3) 

FileTraceabilityInfo Commands used to generate data gen_info (§T3) 

nTables 
Number of tables stored in file (e.g., multiple 
resolutions) 

 

For i in 1…nTables:   

 TableID[i] Unique table identifier Integer 

 TableInfo[i] Table information (e.g., resolution) gen_info (§T3) 

 ByteOffset[i] Byte offset of table i in file  Integer 

nCompressors 
Number of distinct compressors used in the different 
attributes stored later 

Integer 

For i in nCompressors:   

 Compressor[i]  comp_info (§T4) 

For i in 1…nTables:   

 Table[i]  table (§T5) 

 
 

§T2: File header (file_header) 

Field Brief Description Type 

FileName  String 

FileType e.g. “Variant”, “Gene Expression”, etc. String 

FileVersion For keeping track of updates String 

 

 

§T3: General information structure (gen_info) 

Field Brief Description Type 

PayloadSize To allow skipping over this Integer 

Payload Compressed with predefined compressor (e.g., 7z) Bytes 

 
 
Description: 

 The file format supports storage of protection information for access control, metadata, 
versioning and traceability. While these allow a generic representation compressed with 
7zip, in practice one would typically use standard JSON/XML/XACML based schemas for 
this information along with standard URI (uniform resource identifier) notation (e.g., as 
done in MPEG-G part 3 [5]). See Section 2.8 for more details. 

 The proposed file format stores the annotation data in multiple tables, where different 
tables can be used to store the data at different resolutions, among other possible 
applications. The basic information about the table such as the resolution level can be 
extracted without needing to read the whole file using the TableInfo field in some standard 
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JSON/XML-like format. Similarly, the byte offset of the tables in the compressed file are 
available to directly jump to a specific table. 

 The file stores a list of compressors indexed by unique identifiers. These can be referred to 
in the tables, thus avoiding repeated description of compressors used in multiple tables or 
for multiple attributes. See Section 2.3 for details. 

 Finally, the file stores the tables (Section 2.4). 

 

2.3 Compressors 

§T4: Compressor information structure (comp_info) 

Field Brief Description Type 

CompressorID Unique compressor identifier String 

nDependencies 
To allows compression of an attribute based on 
values of other attributes 

Integer 

CompressorNameList List of compressor names (or “EMBEDDED”) List(String) 

CompressorParametersList Parameters required for decompression List(gen_info) 

 
Description:  
This structure stores the description of a compressor. The unique CompressorID is used within the 
tables to point to a compressor. The compressor name and parameters can be used for a 
standard compressor (listed below) or it can be used for describing the decompression mechanism 
within the CompressorParameters by setting CompressorName to “EMBEDDED”. Multiple 
compressors can be applied in sequence using a list.  
 
The format supports compression of an attribute using other attributes as side information (as long 
as there is no cyclic dependency). The variable nDependencies denotes the number of 
dependency attributes needed for the decompression (the corresponding attributeIDs are specified 
in §T6). Compressors like context-based arithmetic coding can easily support the incorporation of 
side information. Another mechanism to incorporate the side information from other attributes is to 
reorder or split the values of the current attribute based on the values of the other attributes, which 
can bring together similar values and provide better compression. The parameters describe the 
dependencies used by each compressor in the list. 
 
The attribute information structure (§T6) supports storage of additional data required for 
decompression, which is common to all chunks, in the variable CompressorCommonData. This 
can be useful for storing codebooks, dictionaries or statistical models computed from the entire 
data. 
 
Non-exhaustive list of standard compressors: 

 Run length encoding: for long runs with same value, replace by value and length of run. 

 Delta encoding: for increasing sequences of numerical values, replace by difference 
between consecutive values. 

 Dictionary-based/enumeration: for attributes taking values from a small set of options, 
replace by index in the set and store the dictionary in CompressorCommonData. 

 Sparse: for attributes that rarely differ from the default value (specified in §T6), represent 
as coordinate position and value for the non-default values. The coordinate positions can 
be further delta coded within each chunk to improve compression, for example, in a 2-
dimensional sparse array, the row index can be delta coded and the column index can be 
delta coded within each row. 

 Variable length array: separate variable length arrays into value stream and length 
stream. 
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 Tokenization: for structured string attributes, split into tokens of different types and encode 
each token in terms of previous value (e.g., match with previous token, delta, new value, 
etc.). 

 No compression: can be useful for faster selective access. 

 General purpose compression/entropy coding methods: gzip, bzip2, 7-zip, adaptive 
arithmetic coding, BSC (http://libbsc.com/). 
 

Note that this list is not exhaustive and specialized compressors for different attributes can be 
supported for certain applications. For example, several specialized compressors such as GTC [6] 
exist for genotype data in variant call supporting fast random access to rows/columns. 
 
Some compressors above produce multiple streams, e.g., the coordinates and values for the 
sparse compressor. These can be further compressed using different entropy coders by specifying 
the appropriate parameters. For example, if  
 
CompressorNameList =   [‘sparse’,’gzip’,’7-zip’] 

CompressorParameterList =  [ 

{“outStreams”: [“coordinate”, “value”]}, 

{“inStreams” : [“coordinate”]}, 

{“inStreams” : [“value”]} 

] 

 
then gzip is applied to the coordinate stream and 7-zip is applied to the value stream (here we 
used JSON for representing the parameters). This enables the application of optimal compressors 
for each data stream. If the streams are not specified, the compression is applied to all the 
incoming streams. 
 
Embedded compressor: In case of embedded compressors, the decompression executable is 
put in the compression parameters along with the digital signature as a proof of origin and 
authenticity to protect against malicious software. For interoperability across different platforms, a 
standardized virtual machine bytecode should be used for the decompression executable. 
 

2.4 Table 

Table Header
Table protection

Table metadata

Table summary statistics

Attribute information

Attribute 1
Attribute 2

Attribute 3

Index

Data

Table

 

Figure 3: Illustration of table structure for the one-dimensional case. 



7 

 

 
 

§T5: Table 

Field Brief Description Type 

TableID Same as in §T1 gen_info (§T3) 

TableInfo Same as in §T1 gen_info (§T3) 

TableProtection Access control policy gen_info (§T3) 

TableMetadata Metadata/Linkage gen_info (§T3) 

SummaryStatistics e.g., Count, Average value List(Key-value) 

nDimensions Number of dimensions Integer 

For i in 1…nDimensions:   

 Size[i] Size of dimension i Integer 

 DimensionName[i]   

 DimensionMetadata[i] Metadata/Linkage gen_info (§T3) 

If nDimensions == 2:   

 SymmetryFlag True if 2d array is symmetric  Bool 

   

nAttributesMain   

For i in 1…nAttributesMain:   

 AttributeInfoMain [i]  attr_info (§T6) 

ByteOffsetMain Byte offset of IndexMain Integer 

If nDimensions > 1: Dimension-specific attributes  

 For i in 1…nDimensions:   

  nAttributesDim[i] 
Number of dimension specific 
attributes  

Integer 

  For j in 1…nAttributesDim[i]:   

   AttributeInfoDim[i][j]  attr_info (§T6) 

  ByteOffsetDim[i] Byte offset of IndexDim[i] Integer 

   

IndexMain  index (§T7) 

DataPayloadsMain  data (§T9) 

If nDimensions > 1: Dimension-specific attributes  

 For i in 1…nDimensions: 
// each of these are treated as a 1-d 
array 

 

  IndexDim[i]  index (§T7) 

  DataPayloadsDim[i]  data (§T9) 

 
Description: 

 Just like the top-level file structure, each table consists of access control and metadata 
(discussed in Section 2.8). The table also contains some summary statistics (typically 
averages, counts or distributions) for fast access. 

 For each dimension within the table, we store the size, name, metadata. For the 2-
dimensional case, we also store a flag denoting whether the matrix is symmetric (e.g., Hi-C 
data which is symmetric). 

 We have the attributes for the main table – for these we store the information (Section 2.5) 
and also the byte offset of the data for the main table. 

 This is followed by a list of dimension-specific attributes (Section 2.5). We also store the 
byte offset of the data for each dimension, allowing selective access to the attributes for a 
particular dimension.  
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 Finally, the table stores the index and data for the main table and each dimension (if 
applicable). 

 Note that dimension-specific attributes are considered to be one-dimensional arrays in the 
following sections for chunking, indexing etc. 

 

2.5 Attributes 

§T6: Attribute information structure (attr_info) 

Field Brief Description Type 

AttributeInfoSize To allow skipping over structure Integer 

AttributeID Unique attribute identifier Integer 

AttributeName  String 

AttributeMetadata Metadata/Linkage/Grouping of attributes gen_info (§T3) 

AttributeType 
Fundamental types (e.g., int, char, float, string) or 
derived types (e.g., fixed-length, variable-length 
array) 

String 

DefaultValue For sparse encoding if most values match default Attribute Type 

SummaryStatistics e.g., Count, Average value List(Key-value) 

CompressorID Compressor used for this attribute Integer 

For i in 1…nDependencies: nDependencies defined in §T4  

 If nDimensions > 1:   

  Dimension 

If this is an attribute of the main n-dimensional 
table, this tells which dimension contains the 
dependency attribute (set to nDimensions+1 if 
dependency attribute is also in main n-
dimensional table) 

Integer 

 AttributeID Attribute ID containing the dependency Integer 

CompressorCommonDataSize  Integer 

CompressorCommonData 
To store codebooks/statistical models for the 
compressor that are common to all chunks  

Bytes 

 
Description: 

 For each attribute, we specify the unique identifier, name and metadata. 

 The AttributeType can be either  
o a fundamental type like character, string (null terminated), float, double, Boolean, 

signed and unsigned integers with different bitwidths. 
o Derived type like variable length or fixed length arrays. 

 The DefaultValue of the attribute allows us to use sparse encoding when most values are 
equal to the default. 

 Each attribute can contain certain summary statistics (typically averages, counts or 
distributions) for fast access. 

 The compression method used for the attribute is specified using the compressorID. In 
case the compressor uses side information/context during the decompression process, the 
corresponding dependency attributes must also be specified. In case of multidimensional 
arrays, the side information can either be obtained from the multidimensional array 
attributes or from a dimension specific attribute. For example, in a VCF file, one could use 
a variant specific field (which is a dimension specific attribute) as side information for 
compression of genotype data (which is an attribute of 2-dimensional main table). 

 As previously mentioned in Section 2.3, the attribute information structure (§T6) supports 
storage of additional data required for decompression, which is common to all chunks, in 
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the variable CompressorCommonData. This can be useful for storing codebooks, 
dictionaries or statistical models computed from the entire data. 

 

2.6 Chunks and Indexing Structure 

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 5

Start index

End index

Byte offset

Additional Index 1
Additional Index 2

Additional index 3

Attributes indexed

Index type

Index data

Index

 

Figure 4: Illustration of index structure for the one-dimensional case when the flag 
AttributeDependentChunks is False. 

 
 

§T7: Index structure (index) 

Field Brief Description Type 

AttributeDependentChunks 
Flag denoting whether chunks sizes are 
dependent on the attributes or if same 
chunking is used for all atttributes 

Bool 

If not AttributeDependentChunks:   

 ChunksStructure  chunks (§T8) 

Else:   

 For i in 1…nAttributes:   

  ChunksStructure[i]   

// Additional attribute specific indexes   

nAdditionalIndexes 

Number of additional indexes for faster 
query based on certain attributes (e.g., 
chromosome and position) – these return 
the chunk number(s) containing the 
desired query results 

Integer 

For i in 1…nAdditionalIndexes:   

 AttributeIDsIndexed[i] List of attributes indexed List(Integer) 

 IndexType[i] 
Index type (e.g., CSI index for 
chromosome and genomic position or B-

String 
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tree for database type queries) 

 IndexSize[i] To allow skipping over index Integer 

 IndexData[i] 
Actual index data, specifics depend on 
IndexType[i] 

Bytes 

 
 

§T8: Chunks structure (chunks) 

Field Brief Description Type 

nChunks Number of chunks Integer 

VariableSizeChunks 
Flag denoting whether chunks sizes are 
variable or fixed (except at the boundary of 
each dimension) 

Bool 

If VariableSizeChunks:   

 For j in 1…nChunks:   

  For k in 1…nDimensions:   

   StartIndex[j][k] Start position of chunk along dimension k  Integer 

   EndIndex[j][k] End position of chunk along dimension k Integer 

  ByteOffset[j] Byte offset of chunk j in file Integer 

Else:   

 For k in 1…nDimensions:   

  ChunkSize[k] 
For fixed size chunks, sufficient to store 
size of chunk in each dimension 

Integer 

 For j in 1…nChunks:   

  ByteOffset[j] Byte offset of chunk i in file Integer 

 
Description: 

 Depending on whether AttributeDependentChunks is true, we can use the same 
chunking for all attributes or attribute dependent chunking.  

o Using the same chunking for all attributes requires much smaller index structure 
and is useful when most of the time all attributes within a chunk are queried. 

o Using attribute dependent chunking is useful when the optimal chunk size for 
different attributes with respect to compression and random access varies a lot. For 
example, if some attributes are sparse while others are dense, using the same 
chunk size might lead to suboptimal compression. It can also be useful when most 
of the time all chunks for a single attribute are queried.  

o The organization of the chunks and attributes depends on the mode of operation, as 
shown in Figures 7 and 8 and in §T9. 

 The rectangular chunks can be fixed size or variable size depending on the 
VariableSizeChunks flag. While fixed size chunks are simpler to deal with, especially for 
multidimensional tables, variable size chunks can be useful when the sparsity of the data is 
highly varying and hence choosing a single chunk size is not optimal. In some cases, 
variable size chunks can allow chunks based on an attribute such as chromosome/genome 
position, which can allow faster random access with respect to those attributes. 

 In case of variable size chunks, we store the start and end index in the table for each chunk 
along each dimension. In case of fixed size chunks, we just need to store the chunk size 
along each dimension. In both cases, we store the byte offset of each chunk in the file for 
random access. Figures 5 and 6 illustrate the chunks and the corresponding index. 
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 In a number of applications, random access with respect to row number or column number 
is not meaningful, instead random access with respect to certain attributes is desired. 
For example, random access with respect to genome position is frequently required. The 
proposed format supports a flexible mechanism for such applications. We can store any 
number of additional attribute specific indices by providing the type of the index from a 
standard set (e.g., B-tree for database type queries, R-trees or CSI index [7] for range 
queries), the attributeIDs (e.g. chromosome, position) and the actual indexing data stored 
in a binary format. The genomic range indexing can store the leftmost and rightmost 
coordinate for each chunk, allowing quick identification of the chunks overlapping the 
queried range. Similarly, the B-tree index can store a map from the attribute value to the 
chunk containing the value and the position of the value within the chunk.The lookup based 
on these works as follows: 

o The user specifies a query (e.g., attribute=”abcd” or attribute between 1 and 10000, 
etc.). 

o The attribute specific index returns the chunk number(s) that contain values that 
match the query condition. 

o Then these chunks are recovered using the chunk index, filtering out values that 
match the condition (because chunks can also contain non-matching values). 

 Note that the data in different chunks are compressed independently. However, global 
compression data can be shared across chunks using the CompressorCommonData 
mechanism (§T6). 

 For symmetric 2d arrays (when SymmetryFlag in §T5 is true), the chunks only need to 
cover the lower triangular part and the diagonal. The decompression process takes care of 
the upper diagonal values by filling in the corresponding lower triangular values. For all 
other cases, the chunks must cover the entire range of indices without overlapping. 
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5
nchunks: 15
VariableSizeChunks: False
ChunkSize[1]: 5
ChunkSize[2]: 11
For j in 1..nChunks:

ByteOffset[j] 

 

Figure 5: Illustration of fixed size chunks and the corresponding indexing data for a 2-dimensional 
array. 
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Figure 6: Illustration of variable size chunks and the corresponding indexing data for a 2-
dimensional array. 

 
 

2.7 Data Payloads 
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Payload Size
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Figure 7: Illustration of data payload structure for the one-dimensional case when the flag 
AttributeDependentChunks is False. 
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Data

Payload Size

Payload

Chunk 2
Chunk 1

 

Figure 8: Illustration of data payload structure for the one-dimensional case when the flag 
AttributeDependentChunks is True. 

 
§T9: Data Payloads 

Field Brief Description Type 

If not AttributeDependentChunks:   

 For i in 1…nChunks:   

  For j in 1…nAttributes:   

   Payload Size[i][j] To allow skipping over certain attributes  Integer 

   Payload[i][j] Compressed payload Bytes 

Else:   

 For j in 1…nAttributes:   

  For i in 1…nChunks:   

   Payload Size[j][i]  Integer 

   Payload[i][j] Compressed payload Bytes 

 

Figures 7 and 8 illustrate two modes of storing the data based on the flag 
AttributeDependentChunks. The pros and cons of these modes are discussed in Section 2.6.  
 

 

2.8 Linkages, Interoperability with MPEG-G and Access Control 

2.8.1 Organization within MPEG-G file 

While we describe the format as an independent file format here, it can also be used as part of an 
MPEG-G file by storing it in a dataset. Note that an MPEG-G file can store the data for an entire 
study, with each dataset group typically corresponding to an individual. Each MPEG-G dataset 
group is further divided into datasets corresponding to different sequencing runs.  
 
For storing the data corresponding to a single individual, the different annotation files can be 
incorporated as distinct datasets as shown below, each dataset containing a single annotation file 
or sequencing data. 
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Dataset group (single individual) --> 
         Dataset 1 (sequencing data) 
         Dataset 2 (sequencing data) 
         Dataset 3 (variant call data) 
         Dataset 4 (gene expression data) 
         … 

 
For collecting annotation data from a larger study, we can organize as follows: 
 
Dataset group (large study) --> 
         Dataset 1 (variant call data)          --> 
          Annotation file (sample 1) 
          Annotation file (sample 2) 
          … 
         Dataset 2 (gene expression data) --> 
          Annotation file (sample 1) 
          Annotation file (sample 2) 
          … 
         … 

 
Note that the different annotation files can be merged together for improved compression and 
analysis performance. 
 
Dataset group (large study) --> 
         Dataset 1 (variant call data)          --> 
                    Annotation file (all samples) 
         Dataset 2 (gene expression data) --> 
                    Annotation file (all samples) 
         … 

 
The existing dataset header structure needs to be augmented with additional fields to support the 
data type (sequencing/variant/gene expression/…), the number of annotation files contained in the 
dataset, and the byte offset of each of these files. 
 
When a compressor is shared across annotation files or across datasets, it’s parameters can be 
stored at the dataset level or dataset group level, respectively. The annotation file in that case 
contains a compressor structure with compressor name “POINTER” and the compression 

parameter storing the location, e.g., {“DatasetGroupId”: 1, “DatasetId”: 2, 

“CompressorId”: 5} denotes that the compressor is as specified in the 5th compressor in 

dataset group 1, dataset 2. 
 

2.8.2 Linkages 

The format provides a mechanism to store linkages between different types of annotation data and 
the corresponding sequencing data. 
 
 

2.8.2.1 Metadata-based linkage 

The dataset groups or datasets storing the sequencing data or the related annotation data can be 
specified in the FileMetadata or TableMetadata using a standard URI (uniform resource identifier) 
notation as described in MPEG-G part 3 [5] or using JSON. For example, to provide linkage to a 
sequencing dataset, the following JSON can be used in the FileMetadata: 
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“Linkages”: [{ 

   “DataType”  : “Sequencing”, 

   “DatasetGroup” : 5, 

   “Dataset”  : 2 

    }] 

 

 

While the example shows only a single linkage, one can have multiple linkages. 
 
One can also have Table level linkages. There can be two types: 

- By index – in this case, the nth row (column) in one table corresponds to the nth row 
(column) in another table. This can be useful to avoid repetition when multiple annotation 
files/tables share the same rows/columns (e.g., multiple VCFs that are not yet merged and 
consist of the same variants). Similarly, this is useful when the information about the 
samples is stored in a single table, and both VCF and gene expression tables link to this. 

- By value – in this case, a specific attribute is linked by matching value to an attribute in 
another table. For example, the gene expression data might consist of only the gene 
names while the detailed information about the genes is available in another file. An 
example use case for such a linkage might be a query requesting gene expression data for 
all genes in the MHC (major histocompatibility complex), which corresponds to 
autoimmune diseases and specifies a range of coordinates in chromosome 6 for humans. 
To address this query, the gene names for the coordinate range can be obtained from the 
gene information file based on a genomic coordinate index and then these names can be 
queried in the gene expression file to the get the required data. 

 
Examples: 
Linking rows (dimension 1) with rows of another table (table no. 3 in same annotation file): 
 

“Linkages”: [{ 

   “Type”    : “byIndex”, 

   “DimensionInCurrentTable” : 1, 

   “Table”    : 3, 

   “DimensionInLinkedTable” : 1 

    }] 

 

 
Linking columns (dimension 2) with rows of another table by value of attribute. (attribute 2 in 
dimension 2 of current table linked to attribute 5 in dimension 1 of table 3 in dataset 4, file 2). 
 

“Linkages”: [{ 

   “Type”    : “byValue”, 

   “DimensionInCurrentTable” : 2, 

   “AttributeInCurrentTable” : 4, 

   “Dataset”    : 4, 

   “AnnotationFile”   : 2, 

   “Table”    : 3, 

   “DimensionInLinkedTable” : 1, 

   “AttributeInLinkedTable” : 5, 

    }] 

Since the metadata structure supports arbitrary information storage, the framework can be 
extended even further to link more than 2 tables by using a standardized format (e.g., table 3 can 
translate the gene ids used in table 1 to the gene names in table 2). Also note that while the 
examples shown above use a specific JSON based format for linkages, one can also use other 
formats like XML. 
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2.8.2.2 Attribute-based linkage 

The metadata-based linkage is useful for high level linkages, but in some cases, we need linkage 
for each row/column. For example, in a VCF file with multiple samples, the sequencing data 
corresponding to particular samples can be linked by adding attributes SequencingDatasetGroup 
and SequencingDataset to the column attributes. Such linkage attributes should have 
“LinkageAttributeFlag” set to True in the metadata to allow the decompressor to distinguish linkage 
attributes from normal attributes. 
 
In some cases, there is a need to map between annotation datasets according to genomic region. 
In most cases, this should be achieved by separately indexing each of the datasets. Thus, to find 
the sequencing data corresponding to a region in the VCF file, one can look up the master index 
table of the sequencing data and find the appropriate access unit(s). Using separate indexing for 
different datasets allows the choice of optimal chunk sizes and other parameters for each of the 
datasets. Furthermore, in some cases direct linking of a variant to an AU might not be possible 
due to different AU classes. Similarly, in VCF files with multiple samples, the variant maps to the 
access units across several datasets and storing this information can take up significant storage. 
 
If relevant, one can also store the AUId or byteoffset in the sequencing data as a row attribute in 
the VCF file, allowing quick lookup of the access unit corresponding to the current variant. 
 
We can also map a gene to a list of variants by using a list-type attribute to the genes. 
 

2.8.3 Access control 

The access control policy can be specified at both the file level and the table level, typically using a 
standard format such as XACML. 
 
Certain users might have access to all the data, while others might have access only to coarse 
resolution data (recall that different resolutions are stored in different tables). This type of policy 
should be specified at the file level.  
 
On the other hand, policies specific to the attributes within a table should be specified at the table 
level. This can include access to only a subset of attributes, or access only to certain chunks 
based on the value of some attribute. Another type of policy could allow access to the metadata 
and information but not to the actual data. 

 

2.9 Decompression Process 

We next describe the query types supported and the corresponding decompression methods. 
These are not mutually exclusive and aspects of these can be combined together, e.g, 
decompressing both the metadata and certain attributes or decompressing selected attributes from 
selected chunks. Also note that the access control policy might restrict some of these queries. 
Standardized APIs similar to MPEG-G part 3 [5] can be used to support these. 
 
Metadata/information queries 

Only metadata and information about the tables (e.g., resolution level), compressors, attributes 
and/or chunks requested. 
 

1. The top-level information in §T1 can be directly accessed at the beginning of the file. 

2. The table-specific metadata/attribute details can be accessed by using the ByteOffset of 
the table specified in §T1. 
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Complete data decompression  

Decompression of the entire data, including all tables and attributes. 
 

1. First the top-level metadata and table information is read 

2. Then the compression parameters are loaded 

3. For each table: 

a. The table information, the dimensions and the attributes are read. 

b. The index is read to determine the positions of the chunks along each dimension 

c. The data payloads for each chunk and each attribute are decompressed (this 
process can be parallelized). If the attribute is compressed using another attribute 
as a dependency/context, then we first decompress the other attribute. If the 
attribute uses CompressorCommonData (§T6), that is loaded before 
decompressing any chunks.  

d. For 2-d symmetric arrays (see SymmetryFlag in §T5), we decompress only the 
diagonal and lower triangular matrix, filling in the upper triangular part using 
symmetry.  

 
Decompression of only one table 

Similar to “Complete data decompression” except that ByteOffset of the requested table (§T1) is 
used to jump to the table and only that table is decompressed. 
 
Query for selected attributes of a table 

Similar to “Decompression of only one table” except that  

 Only the information about the requested attributes is read (skipping over other attribites 
using AttributeInfoSize variable in §T6). 

 Only the requested attributes are decompressed by skipping over other attributes using 
Payload Size[i][j] in §T9. When attribute dependent chunks are used, all the chunks for a 
given attribute are stored together, and this process becomes straightforward (Figure 8). 

 
Query only selected range of indices in the array 

Similar to “Decompression of only one table” except that  

1. The index is loaded and depending on the type of chunking (fixed size/variable size), the 
chunks overlapping with the requested range are determined. 

2. The ByteOffset in §T8 is used to jump to the payload for the chunks determined above. The 
process is more efficient when attribute dependent chunks are not used and all the 
attributes for a given chunk are stored together. 

3. The requested chunks are decompressed and only the overlapping indices are returned. 
Note that if the compressor of some attribute allows efficient random access within a 
chunk, we utilize this to further boost the decompression speed. Some cases where this 
might happen include sparse arrays or specialized compressors for genotypes such as 
GTC [6]. 

 
Query based on value/range of certain attributes 

Similar to “Query only selected range of indices in the array” except that  
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1. If an additional attribute specific index (§T7) is available for the attributes in question, it is 
used to determine the relevant chunk(s). 

2. If such an index is not available, we decompress the attributes in question for all the 
chunks and determine the relevant chunks. Note that even when an additional index is not 
used, we are still able to speed up the process since we only decompress some attributes 
for all the chunks. The rest of the attributes need to be decompressed only for the relevant 
chunks. 

 

2.10 Folder Structure and Editing 

The file format described above offers several advantages and is convenient for transmission, 
long-term storage and fast querying. However, in case the data is kept on a single machine and 
needs to be edited frequently, it is more suitable to store it in a directory/folder hierarchy using a 
file manager. The folder hierarchy allows easy manipulation of parts of the data by modifying only 
the files corresponding to a single chunk and attribute, rather than needing to overwrite the entire 
file. When the editing is completed and the data needs to be transmitted, it can be converted back 
to the single file format, which recomputes the index based on the data payload sizes and packs 
the folder hierarchy back into one file. The conversion from the file format to the folder hierarchy 
and back is straightforward, with each table becoming a folder, and within each table, each chunk 
becomes a folder (assuming AttributeDependentChunks is False). In the folder hierarchy, the 
index only needs to store the attribute-specific indexes since the chunks are already stored in 
distinct folders. A simple example is shown in Figure 9. 

Table Header
Table protection
Table metadata

Table summary statistics

Attribute information

Attribute 1
Attribute 2

Attribute 3

Index

Table

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 5

Attribute 1
Attribute 2

Attribute 3

Payload Size

Payload

Data

File format Folder hierarchy
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Protection

Metadata
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Attribute 
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Attribute 1

Attribute 2

...Index

Data

Chunk 1

Attribute 1

Attribute 2

...

Chunk 2

Attribute 1

Attribute 2

......

  Figure 9: Conversion between file format and folder hierarchy for a single table. In the 
folder hierarchy, the green boxes are files while the blue boxes are folders. 

 

2.11 Examples 

To illustrate how this format can be used for storing a variety of annotation data while providing the 
relevant functionalities, we discuss two examples in this section. 
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2.11.1 Variant Call Data (VCF) 

##fileformat=VCFv4.0 

##fileDate=20090805 

##source=myImputationProgramV3.1 

##reference=1000GenomesPilot-NCBI36 

##phasing=partial 

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> 

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> 

##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency"> 

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> 

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> 

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> 

##FILTER=<ID=q10,Description="Quality below 10"> 

##FILTER=<ID=s50,Description="Less than 50% of samples have data"> 

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> 

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> 

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> 

#CHROM POS     ID        REF ALT    QUAL FILTER INFO                              FORMAT      

NA00001        NA00002        NA00003 

20     14370   rs6054257 G      A       29   PASS   NS=3;DP=14;AF=0.5;DB;H2           GT:GQ:DP:HQ 

0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. 

20     17330   .         T      A       3    q10    NS=3;DP=11;AF=0.017               GT:GQ:DP:HQ 

0|0:49:3:58,50 0|1:3:5:65,3   0/0:41:3 

20     1110696 rs6040355 A      G,T     67   PASS   NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 

1|2:21:6:23,27 2|1:2:0:18,2   2/2:35:4 

20     1230237 .         T      .       47   PASS   NS=3;DP=13;AA=T                   GT:GQ:DP:HQ 

0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 

20     1234567 microsat1 GTCT   G,GTACT 50   PASS   NS=3;DP=9;AA=G                    GT:GQ:DP    

0/1:35:4       0/2:17:2       1/1:40:3 

Table 1:  A Simple VCF File Example (from IGSR) 

 
Table 1 above shows a section of a VCF file, only 5 variants and 3 samples are displayed. We 
next describe how this can be translated to the proposed file format while preserving the data and 
providing additional functionalities: 
 
Metadata 

The comment lines (starting with ##) can be retained as part of the FileMetadata. If this is stored 
as part of an MPEG-G file with sequencing data, the metadata also contains the corresponding 
dataset groups that contain the sequencing data corresponding to this variant call data.  
 
Traceability  

When this is stored as part of an MPEG-G file with sequencing data, the traceability contains the 
commands used for generating the variant calls starting from the raw sequencing data along with 
the URIs of the tools used and their versions. This can be used to validate the file in a reproducible 
manner. 
 
Tables 

Since variant data is typically stored in a single resolution, we store it in a single table with 
nDimensions = 2.  
 
Dimensional attributes 

For the first dimension (variants), there are several dimensional attributes such as CHROM, POS, 
ID, REF, ALT, QUAL, FILTER, and the INFO fields. The INFO field is broken into multiple 
attributes such as NS, DP, AF, etc. as described in the comments. The types of these attributes 
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are also mentioned in the comment fields. The attribute metadata can be used for grouping these 
together (e.g., NS, DP, AF belong to the group INFO). The default value depends on the attribute, 
e.g., it can be set to “PASS” for the FILTER attribute. 
For the second dimension (samples), the sample name (e.g., NA00001) is the only attribute 
present in the original VCF file. Further attributes can be added to support linkages to the 
sequencing data, e.g., the datasetGroup and dataset containing the sequencing data 
corresponding to this sample. 
More dimensional attributes can be added to support fast access to certain quantities such as 
counts or average quantities corresponding to a particular variant. 
The description of the INFO attributes in the comments can be stored as part of the 
AttributeMetadata. 
 
2-d table attributes 

These are the attributes described in the FORMAT fields such as GT, GQ, DP, etc. each of which 
is a 2-dimensional array. The types of these attributes are again described in the comments. In 
cases where most variants are not expressed, the default value for the GT attribute can be set to 
0/0. 
The description of the attributes in the comments can be stored as part of the AttributeMetadata. 
 
Compressors  

The compressors for the attributes should be chosen based on the type and characteristics of the 
attribute. For example, CHROM can be compressed using an enumeration-based scheme 
followed by gzip, POS can be compressed using delta coding followed by gzip, etc. The sample 
names (NA00001 etc.) can be efficiently compressed with a tokenization-based string compressor. 
Some of the INFO fields are present for only a small number of variants, these can be encoded 
with a sparse representation. Similarly, the genotypes (GT) can be encoded with a sparse 
representation or with a specialized compressor for genotypes (e.g. GTC [6]). 
The length of certain variable length attributes can depend on other attributes – e.g., the AF (allele 
frequency) attribute length is equal to the number of alternate alleles. In such cases, 
nDependencies for the compressor can be set to 1 and this dependency can be exploited to boost 
the compression. 
 
Chunking and Indexing 

The chunking for the main 2d array can be performed depending on the access patterns. If most 
accesses are for variants in a particular region, then each chunk should include all samples and a 
small number of variants (i.e., horizontal chunks). Whereas if most accesses are for all variants for 
a particular sample, the chunk should include all variants and a small number of samples (i.e., 
vertical chunks). If both types of queries are quite common, then it is better to use rectangular 
chunks including a small number of variants and samples. By increasing the size of chunks, 
random access performance can be traded off against compression ratio. 
 
For random access based on the genomic region, an additional index can be used as shown in the 
table below (based on CSI indexing [7]). 
 

AttributeIDsIndexed CHROM, POS 

IndexType CSI  

IndexSize Size of index 

IndexData CSI index structure 

 
Rather than specifying the actual file position as done in CSI, this will instead return the list of 
chunkIDs that overlap with the genomic region in question. The positions of these chunks in the 
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file can then be determined from the default index structure. If indel variants are prevalent, the CSI 
indexing should be performed based on both START and END position of the variant. 
 
More attributes can be indexed to allow fast random-access queries. E.g., the FILTER attribute 
can be indexed to allow faster filtering of variants based on whether FILTER=PASS or not. 
 

Protection 

The access control policy can take various forms depending on the use case. Certain users might 
have access to all the data, while others might have access only to variants within certain genomic 
regions (specified by CHROM and POS). Similarly, one can restrict access to only certain 
samples. Note that this requires that the chunks be chosen accordingly. The access control can 
also be imposed at the attribute level, e.g., allowing access to the INFO fields but not to the 
individual sample data. 

 

2.11.2 Genome Functional Annotation Data (BED)  

browser position chr7:127471196-127495720 

browser hide all 

track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2 itemRgb="On" 

chr7    127471196  127472363  Pos1  0  +  127471196  127472363  255,0,0 

chr7    127472363  127473530  Pos2  0  +  127472363  127473530  255,0,0 

chr7    127473530  127474697  Pos3  0  +  127473530  127474697  255,0,0 

chr7    127474697  127475864  Pos4  0  +  127474697  127475864  255,0,0 

chr7    127475864  127477031  Neg1  0  -  127475864  127477031  0,0,255 

chr7    127477031  127478198  Neg2  0  -  127477031  127478198  0,0,255 

chr7    127478198  127479365  Neg3  0  -  127478198  127479365  0,0,255 

chr7    127479365  127480532  Pos5  0  +  127479365  127480532  255,0,0 

chr7    127480532  127481699  Neg4  0  -  127480532  127481699  0,0,255 

Table 2: A Simple BED File Example (from UCSC Genome Browser FAQ) 

 

Table 2 above shows a section of a BED file, with some annotation data. We next describe how 
this can be translated to the proposed file format while preserving the data and providing additional 
functionalities: 
 
Metadata 

The comment lines (first three lines) can be retained as part of the FileMetadata. If this is stored as 
part of an MPEG-G file with sequencing data, the metadata also contains the corresponding 
dataset groups that contain the sequencing data corresponding to this annotation data. 
 
Tables 

For displaying the data at different scales and resolutions, we store multiple tables with 
precomputed values for different resolutions. The TableInfo field stores the details about the 
resolution in a predefined format, hence allowing the user to query the list of available resolutions 
without needing to read the whole file. The ByteOffset variable for each table allows direct access 
to the desired resolution. Each table has a single dimension. 
 
Attributes 

In this case, each column becomes an attribute: chrom (string), chromStart (integer), chromEnd 
(integer), name (string), score (integer), strand (character), thickStart (integer), thickEnd (integer), 
itemRGB (8-bit integer array of length 3).  
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Compressors  

The compressors for the attributes should be chosen based on the type and characteristics of the 
attribute. For example, chrom can be compressed using an enumeration-based scheme followed 
by gzip, chromStart and chromEnd can be compressed using delta coding followed by gzip, etc. 
The values of thickStart and thickEnd are likely to be close to chromStart and chromEnd, 
suggesting that we can improve the compression by using them as side information.  
Note that in the example shown the value of chromStart matches the value of chromEnd on the 
previous row. One way to exploit this would be to consider chromStart, chromEnd as a single 
attribute of type “integer array of length 2”, but this should be done only if the visualization tools 
understand this alternate representation. 
 
Chunking and Indexing 

For random access based on the genomic region, an additional index can be used as shown in the 
table below (based on CSI indexing [7]). 
 

AttributeIDsIndexed chrom, chromStart, chromEnd 

IndexType CSI  

IndexSize Size of index 

IndexData The CSI index structure 

 
Rather than specifying the actual file position as done in CSI, this will instead return the list of 
chunkIDs that overlap with the genomic region in question. The positions of these chunks in the 
file can then be determined from the default index structure.  
 
Protection 

The access control policy can take various forms depending on the use case. Certain users might 
have access to all the data, while others might have access only to coarse resolution data (recall 
that different resolutions are stored in different tables). Similarly, one can restrict access to only 
certain genomic regions. Note that this requires that the chunks be chosen accordingly. 

 

 

3. Implementation 
 
Here we discuss the current implementation status for the accompanying file format description, 
including the set of features in the format not implemented as of now. We also discuss results on 
some of the MPEG-G annotation test data sets. The GTF compression is based on ideas from 
GPress (https://github.com/qm2/gpress) which is noted at the appropriate places. 
 

3.1 Storage Format 

Note that the following major features are not supported by the current implementation but are 
supported by the proposal: 

1. Multiple tables (e.g., for multiple resolutions) 

2. Variable length chunks (currently fixed length chunks are used along each axis which 
automatically induces rectangular chunking for the main array in case of 2-d datasets) 

3. Attribute-dependent chunks  

4. In the case of compression of one attribute based on other attributes – currently only a 
single dependency attribute is allowed, i.e., compression of one attribute conditioned on 

https://github.com/qm2/gpress


23 

 

two or more other attributes is not implemented. Also, compression of an attribute in a 2-d 
array (e.g., VCF genotype) conditioned on a dimension-specific attribute (e.g., an INFO 
field) is not implemented. 

5. Linkage to MPEG-G parts 1-5 

6. Embedding decompressor code/executable for a specific attribute compressor within the 
compressed file 

7. Including compressor global data (e.g., codebooks, dictionaries, trained models) that can 
be shared across chunks 

8. Other high-level features – protection/traceability 

 
Below is the currently implemented file format. 
 
Top-level 

Name Description Type 

TableName  string 

TableMetadata Stores headers (comment lines) for 
VCF/matrix market file 

string 

TableType VCF/GTF/scRNA_expression string 

nDim 1 or 2 uint8 

DimSize[i] for i in nDim Size along each dimension uint32 

DimName[i] for i in nDim Name of each dimension string 

DimMetadata[i] for i in nDim Metadata of each dimension string 

// nArrays = 1 if nDim = 1, =nDim+1 
otherwise 

For a 2-dimensional table, we have a 
main array and 2 dimension-specific 
(row & column) arrays 

 

DimNattrs[i] for i in nArrays Number of attributes in each array uint32 

For i in nArrays: 
    For j in DimNattrs[i]: 
        AttrParams[i][j] 

Attribute parameters, discussed below See table 
on 
AttrParams 

ChunkSize[i] for i in nDim Chunk size along each dimension uint32 

numChunks[i] for i in nArrays Number of chunks for each array (the 
2-d main array has rectangular chunks 
organized in row-major fashion) 

uint32 

DimByteOffset[i] for i in nArrays Byte offset for each array (i.e., different 
dimension-specific attributes and the 
main array) 

uint32 

For i in nArrays: // go over the dimensional attributes 
and the main attributes 

 

    numAdditionalIndexes[i] Number of attribute-specific indexes uint8 

    For j in numAdditionalIndexes[i]:  Attribute-specific indexes  

        AdditionalIndexType[i][j] 0 (chrom_pos), 1 (levelDB) uint8 

        AdditionalIndexData[i][j] Binary data depending on index type Bytes 

    For j in numChunks[i]: Main index   

        ChunkByteOffset[i][j] This is for the random access to a 
specific chunk in the array 

uint64 

    For j in numChunks[i]: Payload data  

        For k in DimNattrs[i]:   

            PayloadSize[i][j][k]   Size of compressed payload for array 
i, chunk j, attribute k 

uint64 

            Payload[i][j][k] Compressed payload for array i, chunk 
j, attribute k 

Bytes 
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AttrParams 

Name Description Type 

AttrName Name of attribute string 

AttrMetadata Metadata, e.g., comment line 
corresponding to attribute 
(INFO/FORMAT field) in VCF or 
“REQUIRED” in case of compulsory 
attributes. 

string 

AttrType Attribute type (described below) uint8 

DefaultValue Default value for attribute 
represented as a string 

string 

MissingValue Missing value for attribute 
represented as a string (e.g., “.”). 
These are present in the 
decompressed payload  

string 

// Compression parameters   

deltaFlag Whether delta coding is to be applied Bool 

CompressorName BSC/GZip string 

dependencyFlag Whether this attribute is compressed 
dependent on another attribute 

Bool 

If dependencyFlag:   

    DependencyAttributeId Attribute id for the dependency 
attribute 

uint32 

    DependencyTransform Reorder/GTF_start_end/GTF_strand 
(discussed below)  

uint8 

sparseFlag Whether sparse coding is to be 
applied 

Bool 

If sparseFlag:   

    nDimSparse Dimensionality of the array (needed 
to appropriately interpret the 
coordinate and value streams) 
(this is redundant as this information 
can be obtained from the top-level 
structure) 

uint8 

 

3.2 Attribute Types 

Several attribute types are currently supported: 

1. Fundamental data types: 8/16/32/64 bit signed/unsigned integers, float/double, char, bool 
(1 byte). These are represented in binary in the decompressed payload. 

2. Derived types: 

a. String: represented as a 0 terminated char stream in the decompressed payload. 
(we tried other representations such as separation into length and value streams 
but those gave worse results when BSC was applied) 

b. Start/end: for GTF files, we use a pair of uint32 to represent the start and end 
values in the decompressed payload. This is helpful for applying the conditional 
compression from GPress (GTF start end transform) where the start and end fields 
are jointly transformed based on the feature column. 
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3.3 Compression Modes and Parameters 

The attribute compression details are discussed below. 
 

3.3.1 Delta Coding 

Delta coding can be used on any integer data type and is applied to the value stream before any 
sparse coding/conditional compression transformation. The integer bitwidth is kept the same after 
delta coding. 
 

3.3.2 Sparse Coding 

For sparse coding, the coordinate (uint32) and value streams are separated. For 1-d arrays, the 
coordinates are delta coded. For 2-d arrays, the row coordinates are delta coded and the column 
coordinates are delta coded within each row. Finally, the coordinate and value streams are 
concatenated with the number of values written at the start. The coordinates are represented as 
uint32. 
 

3.3.3 Compressors  

The stream for a given chunk and attribute is compressed using BSC/GZip after all transforms are 
applied. Gzip is used at level 9 (best compression) and BSC is used with flag (-b64 -e2). These 
parameters are currently hardcoded in the implementation and are not part of the file format, only 
the compressor name is stored for each attribute. BSC is used by default. 
 

3.3.4 Conditional Compression 

The file format supports conditional compression of one attribute based on another. We have not 
implemented context-based arithmetic coding, which is a classic example for this. Currently, we 
only allow a single dependency and make sure that there are no directed cycles in the 
dependency graph. 
 

3.3.4.1 Reorder Transform 

Here we reorder the values of one attribute based on the values of another attribute, as shown in 
the example below. 
 

• Attribute 1 
• 0, 1, 2, 2, 1, 0, 1, 1, 2, 1 
• Attribute 2 
• a, b, c, d, e, f, g, h, i, j 
• Attribute 2 reordered according to attribute 1 values 
• a, f, b, e, g, h, j, c, d, i 

 
This allows BSC/GZip to exploit the dependency across attributes by bringing similar values 
together. In information-theoretic terms, this can achieve the conditional entropy of one attribute 
conditioned on the other (asymptotically). This is suitable when the dependency attribute takes on 
relatively small number of unique values, in particular this might not be suitable for continuous 
valued or integral data which has ordinal structure.  
 
We use this for VCF genotype likelihood and dosage values (conditioned on genotype) and in GTF 
for compressing the frame (conditioned on feature as done in Gpress). 
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3.3.4.2 GTF Start-End Transform 

This is based on GPress and involves compression of the start & end attributes in the GTF file 
based on the feature column (that can take value gene/transcript/exon etc.). The idea is to delta 
code the end wrt the start. The start itself can be modified based on start or end of the previous 
feature/transcript/exon. The precise algorithm used is shown below. Note that Gpress also uses 
the strand value, but in our case, we figure out the strand value based on the start and end values 
for consecutive exons and store this in the stream (this has very small contribution to size). This is 
because conditional compression based on two attributes (feature+strand) is currently not 
implemented. 
 

 
 

3.3.4.3 GTF Strand Transform 

The strand value is compressed conditioned on the feature column (based on GPress). Basically, 
only the strand value for the gene needs to be stored (also the strand value for the first feature in 
the chunk if it is not a gene). 
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3.4 Additional Indexes 

Additional attribute-specific indexes are used to perform random access based on the value or 
range of a given attribute. Currently the specific attributes being indexed are hardcoded for each 
file type (VCF: chrom/pos, GTF: chrom/pos, gene id, scRNA_expression: gene id), ideally this 
information should be made available in the file format itself. 
 

3.4.1 ChromPos Index 

This consists of a list of chromosome names (strings) and the leftmost and rightmost chromosome, 
position pair in each chunk. This can be used to rapidly identify chunks overlapping with a given 
genomic range. 
 

3.4.2 LevelDB Index 

LevelDB (https://github.com/google/leveldb) is a generic disk-based key-value. The key and value 
are byte arrays. This can be used for creating a gene index for GTF or gene expression data 
mapping the gene id to the chunk containing the gene as well as position within the chunk. 
LevelDB creates multiple files in a folder which are tarred, compressed with BSC and stored in the 
compressed file along with the compressed size.  
 

3.5 Notes on Specific File Types Currently Tested 

Here we describe the default configurations that were tested for three of the file types. It is 
possible to change the compression parameters (e.g., disable delta coding, change BSC to Gzip, 
add some dependency across attributes) by changing the JSON configuration during compression. 
 

3.5.1 VCF 

For a one-dimensional (i.e., with no samples) VCF, the first six columns become separate 
attributes and the seventh column (INFO) is split into multiple attributes. CHROM is stored as a 8-
bit unsigned integer (chromosome name is stored as part of the ChromPos index), POS is stored 
as a 32-bit unsigned integer and is delta coded. The INFO fields are stored as bool when they are 
flags and as strings otherwise. The decompressed file might have a different ordering of the INFO 
fields and in some cases, fields missing in the original file might be displayed in the decompressed 
file with the value “.”. Thus, the decompressed file doesn’t match the original VCF byte by byte. 
 
For two-dimensional (i.e., with samples) VCF, the FORMAT field is stored as a row attribute in 
addition to the attributes mentioned in the previous paragraph. The SAMPLE name becomes a 
column attribute and the actual genotype data is split by colons (“:”) and stored as a 2-d array of 
multiple attributes based on the FORMAT field. The implementation also supports not splitting the 
genotype fields as it might give slightly better compression in some cases.  
 
Chunking is done for both rows and columns. Random access by genomic position range is 
performed using the ChromPos index while random access by sample name is performed by first 
decompressing all sample names (column attributes), identifying the relevant column number and 
decompressing the relevant chunks. 
 

https://github.com/google/leveldb
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3.5.2 GTF (Based on GPress) 

Here the columns become different attributes: chromosome is as done in VCF, start and end are 
stored as a single attribute (as discussed before), strand is stored as a bool and the rest are stored 
as string attributes. Note that this is just a 1-dimensional array. We use reorder transform for 
frame, GTF start end transform and GTF strand transform (all dependent on feature column). Two 
indexes are used – chromPos and LevelDB. The LevelDB index maps each gene id to the start 
and end chunk and line with that gene id (where the end is delta coded wrt the start). This allows 
us to access quickly identify the chunks and the lines within the chunk containing a specific gene 
id (i.e., a gene and all its children transcripts, exons, etc.). 
 

3.5.3 scRNA Expression (Matrix Market or TSV) (Partially Based on GPress) 

This consists of three files: a matrix file with the expression values (stored as sparse 2-d integer 
attributes with genes as rows and barcodes as columns), features.tsv file (stored as row attributes 
– first attribute is the gene id, there might be more associated attributes, stored as string 
attributes), barcodes.tsv file (single column attribute stored as a string attributes). A single large 
column chunk is used since random access by barcode is not commonly used, while the rows are 
divided into multiple chunks. 
 
A LevelDB index is used, mapping the gene id to the chunk containing the gene id, the position of 
the gene id in the chunk along the vertical axis and the position in the sparse 2-d array. When 
random access by gene id is used, the whole barcode list is decompressed, and then only the 
barcodes expressing the gene are written to the decompressed barcodes.tsv file. The 
corresponding expression values are written to the .mtx file and the information associated with 
the gene id is written to the features.tsv. We observed that the decompression of the barcodes.tsv 
file takes up significant fraction of the decompression time and hence added a flag in the 
decompression configuration to disable the barcode decompression when a specific gene id is 
being decompressed. 
 

Features of GPress not yet implemented: 

- GFF3 file compression 

- Bulk RNA seq expression compression 

- Linking of GTF/GFF3 with gene expression 

- Random access based on transcript ids/exon ids 

 

3.5.4 Other File Types Not Yet Implemented/Tested 

The following file types have not been tested and their parser not yet implemented (note that the 
proposal does support these types). 

- Mapping statistics 

- Quantitative tracks (wig) 

- Hi-C 

- Bulk RNAseq 

- Parser for scRNA expression files represented as HDF5/Loom  
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4. Performance Evaluation 
 

All experiments were run on an Ubuntu 18.04 server with 2.2 GHz Intel Xeon processor. All tools 
were run with a single thread (Gzip with default settings, BSC with “-b64 -2 -t1T” flag which is the 
flag used in the end stage for the proposed compressor). The BSC version used here is as available 
at https://github.com/shubhamchandak94/libbsc. The JSON configuration files and the commands 
used for compression/decompression are mentioned below for each specific experiment. The 
linux executable, the compressed bitstreams for the main experiments and the JSON 
configuration files are provided with this proposal. The chunk size used was 10,000 (x 100) for 1 
(2)-d VCF files, 10,000 for GTF files, 1000 for scRNA_expression files. The compressed bit streams, 
executable and JSON configuration files are available here. 
 

4.1 VCF 

4.1.1 Variants Only (No Samples) 

4.1.1.1 Datasets 

Dataset 
no. 

Link 

1 ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_somatic.vcf.gz 

2 ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_structural_variations.vcf.gz  

 

Dataset no. Uncompressed file size (bytes) Number of variants 

1 347,839,686 4,417,937 

2 3,689,444,771 28,953,093 

 

4.1.1.2 Main Compression Results 

Dataset 
no. 

Size (bytes) Compression Time Decompression Time 

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed 

1 347,839,686 33,813,985 28,799,010 18,593,682 7s 42s 22s 2s 17s 15s 

2 3,689,444,771 209,297,354 165,315,184 131,286,050 46s 4m25s 2m42s 16s 2m8s 1m59s 

 
We see close to 37% better compression over Gzip and around 20% better compression than BSC. 
Most of the improvement is due to compression of columns independently as separate attributes 
and due to delta coding of POS. The compression/decompression times are better than BSC but 
worse than Gzip. 
 

4.1.1.3 Random Access Results 

For dataset no. 2, compared to ~2m for decompression of whole file, the decompression of chrom 
22, position 20M-30M takes less than 2s. The chunk size used was 10,000. 
 

4.1.1.4 Commands Used for Proposed Compressor 

Compression: 
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p 

VCF -g -j vcf_1d_compression.json 

https://github.com/shubhamchandak94/libbsc
https://office365stanford-my.sharepoint.com/:f:/g/personal/schandak_stanford_edu/EhKKsqgMPE1PmnmsyVw1QvYBXKMXkkIUYmEQsaVtoYms-A?e=QpLZZj
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_somatic.vcf.gz
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_structural_variations.vcf.gz
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Decompression (whole file): 
./linux_executable -d -i compressed_file.bin -o decompressed.vcf 

 
Decompression (genomic range – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_range.json 

 
Note that as discussed above in the VCF section, the decompressed file doesn’t match the original 
VCF file byte by byte due to reordering of INFO fields. 
 

4.1.2 Variants with Sample Genotypes (1000 Genome Project) 

4.1.2.1 Datasets 

Dataset 
no. 

Link 

1 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1

_v3.20101123.snps_indels_svs.genotypes.vcf.gz  

2 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase

1_v3.20101123.snps_indels_svs.genotypes.vcf.gz  

 

Dataset 
no. 

Uncompressed file size (bytes) Number of variants Number of samples 

1 93,086,828,627 3,007,196 1,092 

2 15,304,146,564 494,328 1,092 

 

4.1.2.2 Main Compression Results 

Dataset 
no. 

Size (bytes) Compression Time Decompression Time 

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed 

1 93,086,828,627 10,781,170,344 4,337,628,848 4,254,124,733 49m 3h36m 2h12m 12m 2h24m 1h36m 

2 15,304,146,564 1,796,657,847 728,642,384 717,980,220 8m 36m 23m 2m 24m 15m 

 

4.1.2.3 Random Access Results 

For dataset no. 2, compared to ~15m for decompression of whole file, the decompression of 
chrom 22, position 20M-30M takes 22s. Decompression of a single sample takes around 1m40s. 
The chunk size used was 10,000 x 100. 
 

4.1.2.4 Impact of Conditional Compression of GL and DS Fields 

The table below shows the impact of using the conditional reorder transform for the DS and GL 
attributes wrt the GT attribute (for dataset 2). We see that the sizes for these are reduced but the 
GL still takes up most of the total space. Note that theoretically, we expect the maximum 
improvement due to this transform on each of DS and GL to be bounded by the entropy of the GT. 
That is, the improvement in this example cannot be more than 19.4 MB for each of GL and DS 
(under certain ideality assumptions). A specialized compressor/lossy compressor for GL can lead 
to huge savings in this regard. 
 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
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Compressor Mode Total size 
(MB) 

GT+DS+GL 
(MB) 

GT 
(MB) 

DS 
(MB) 

GL 
(MB) 

CDTC Without 
conditional 
compression 

749.7 742.3 19.4 40.9 682 

CDTC With conditional 
compression 
(default) 

718.0 710.6 19.4 24.2 667 

 

4.1.2.5 Commands Used for Proposed Compressor 

Compression (default: use conditional compression of GL and DS based on GT): 
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p 

VCF -g -j vcf_2d_compression_default.json 

 
Compression (don’t use conditional compression of GL and DS based on GT): 
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p 

VCF -g -j vcf_2d_compression_no_conditional.json 

 
Decompression (whole file): 
./linux_executable -d -i compressed_file.bin -o decompressed.vcf 

 
Decompression (genomic range – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_range.json 

 
Decompression (sample name – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_sample.json 

 
Note that as discussed above in the VCF section, the decompressed file doesn’t match the original 
VCF file byte by byte due to reordering of INFO fields. 
 

4.2 GTF 

4.2.1 Datasets 

Dataset no. Link 

1 ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.chr.gtf.gz  

2 ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.gtf.gz  

 

Dataset 
no. 

Uncompressed file size (bytes) Number of lines Number of genes 

1 1,162,883,375 2,736,850 58,676 

2 1,163,163,881 2,737,564 58,735 

 

ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.chr.gtf.gz
ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.gtf.gz
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4.2.2 Main Compression Results 

Dataset 
no. 

Size (bytes) Compression Time Decompression Time 

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed 

1 1,162,883,375 43,656,910 24,855,264 18,536,141 15s 1m8s 31s 5s 29s 18s 

2 1,163,163,881 43,668,708 24,863,150 18,541,903 18s 1m9s 31s 5s 28s 18s 

 
We see close to 60% better compression over Gzip and around 25% better compression than BSC. 
Most of the improvement is due to compression of columns independently as separate attributes, 
while a small contribution is made by the conditional compression ideas from Gpress (see below). 
The compression/decompression times are better than BSC but worse than Gzip. 
 

4.2.3 Random Access Results 

For dataset 2, compared to 18s for decompression of the entire file, decompression of range 
chr22:20M-30M took less than 1s, and decompression of a single gene took less than 1s. The 
chunk size used was 10,000. 
 

4.2.4 Impact of Conditional Compression Based on Feature Column (Ideas from 
GPress) 

Here we look at the results without applying the conditional compression ideas from GPress (for 
the start/end, strand and frame columns) on the dataset no. 2. In the table below, we see that 
applying the conditional compression leads to around 5% improvement overall, but the 
improvement on the specific columns can be as high as 50%. Note that the last column “attribute” 
takes up most of the space and hence a specialized compressor for this can significantly improve 
the overall compression. Finally, note that the leveldb index takes up a very small size, partly 
because the index is also kept compressed with BSC. 
 

Component Size in bytes 
Without conditional compression 

Size in bytes 
With conditional compression (default) 

Chrom pos index 3384 3384 

LevelDB gene index 349746 349852 

Chunk index 2192 2192 

seqname 16046 16046 

source 227424 227424 

feature 367876 367876 

Start_end 6695274 5742458 

score 16986 16986 

strand 58652 22524 

frame 263454 149328 

attribute 11634274 11634274 

TOTAL 19644947 18541903 
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4.2.5 Commands used for proposed compressor 

Compression (default: use conditional compression of start/end, strand, frame based on feature): 
./linux_executable -c -i gtf_file.gtf.gz -o compressed_file.bin -p 

GTF -g -j gtf_compression_default.json 

 
Compression (don’t use conditional compression of start/end, strand, frame based on feature): 
./linux_executable -c -i gtf_file.gtf.gz -o compressed_file.bin -p 

GTF -g -j gtf_compression_no_conditional.json 

 
Decompression (whole file): 
./linux_executable -d -i compressed_file.bin -o decompressed.gtf 

 
Decompression (genomic range – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o decompressed.gtf -

j gtf_decompression_range.json 

 
Decompression (gene id – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o decompressed.gtf -

j gtf_decompression_gene.json 

 

4.3 scRNA_expression 

4.3.1 Datasets 

Dataset 
no. 

Link Comments 

1 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
heart cells from 
an E18 mouse 

2 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
heart cells from 
an E18 mouse 

3 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
Cells from a 
MALT Tumor 

4 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
Cells from a 
MALT Tumor 

5 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
brain cells from 
an E18 mouse 

6 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
brain cells from 
an E18 mouse 

7 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz  

scRNA-seq: 10k 
PBMCs from a 
healthy donor 

8 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz   

scRNA-seq: 10k 
PBMCs from a 
healthy donor 

 
 

http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz
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Dataset 
no. 

Uncompressed file 
size (bytes) 

Number of genes Number of 
barcodes 

Number of entries in 
sparse matrix 

1 240,678,371 31,053 7,713 19,049,671 

2 542,853,620 31,053 6,794,880 26,541,357 

3 137,630,766 33,555 8,412 10,794,402 

4 364,846,709 33,555 6,794,880 14,985,831 

5 402,747,405 31,053 11,843 31,522,268 

6 757,325,088 31,053 6,794,880 40,438,578 

7 318,717,693 33,538 11,769 24,825,783 

8 630,371,244 33,538 6,794,880 32,136,028 

 

4.3.2 Main Compression Results 

Dataset 
no. 

Size (bytes) Compression Time Decompression Time 

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed 

1 240,678,371 58,913,493 63,451,206 14,587,061 11s 39s 19s 2s 25s 14s 

2 542,853,620 108,442,884 108,331,318 53,941,730 25s 1m15s 53s 4s 47s 37s 

3 137,630,766 35,582,444 36,602,020 9,622,149 7s 23s 11s 2s 15s 9s 

4 364,846,709 72,131,344 68,688,884 38,162,432 18s 50s 37s 3s 30s 25s 

5 402,747,405 95,748,877 102,746,848 21,798,784 17s 1m4s 32s 3s 43s 24s 

6 757,325,088 152,000,818 153,468,180 67,004,508 34s 1m45s 1m6s 5s 1m3s 50s 

7 318,717,693 77,266,573 81,889,186 18,787,268 14s 51s 24s 3s 33s 18s 

8 630,371,244 127,244,744 126,217,478 60,783,568 28s 1m27s 56s 5s 53s 40s 

 
We see close to 75% better compression over BSC/GZip on the “filtered” datasets (1, 3, 5, 7). The 
improvement on the “raw” datasets is closer to 50%. This is because the main improvement in the 
proposed approach is on the sparse matrix which is a bigger contributor in the filtered datasets 
(see below). The compression/decompression times are better than BSC but worse than Gzip. 
 

4.3.3 Random Access Results 

For dataset 8, compared to 40s for decompression of whole file, decompression of a single gene 
takes 12s. Most of this time is taken up for decompression of barcodes (since all barcodes are 
compressed in a single chunk, we need to decompress all the barcodes and then output only the 
ones that express the given gene). If the barcodes are not decompressed, the time for 
decompression of a single gene reduces to less than 2s. The chunk size used here was 1000 genes. 
 

4.3.4 Breakdown into Individual Components 

We see below the breakdown of the size into individual components for Gzip, BSC and the 
proposed compressor for dataset no. 6 which is a “raw” dataset. Note that “raw” datasets have 
significantly larger barcode files than the “filtered” datasets. We see that the proposed approach 
provides the most benefits for the sparse matrix due to the separation of coordinate and value 
streams and the delta coding of the sparse coordinates. The index takes up a relatively small 
fraction. 
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Compressor Barcode list Feature/gene info Sparse matrix Index Total 

Uncompressed 129.1 MB 1.32 MB 626.9 MB  757.3 MB 

Gzip 19.36 MB 0.25 MB 132.4 MB  152.0 MB 

BSC 15.24 MB 0.17 MB 138.1 MB  153.5 MB 

Proposed 15.24 MB 0.19 MB 51.33 MB 0.24 MB 67.00 MB 

 

4.3.5 Commands Used for Proposed Compressor 

Compression: 
./linux_executable -c -i matrix.mtx.gz features.tsv.gz 

barcodes.tsv.gz -o compressed_file.bin -p scRNA_expression -g -j 

scRNA_expression_compression_default.json 

 
Decompression (whole file): 
./linux_executable -d -i compressed_file.bin -o 

decompressed_matrix.mtx decompressed_features.tsv 

decompressed_barcodes.tsv 

 
Decompression (gene id – update json file as needed): 
./linux_executable -d -i compressed_file.bin -o 

decompressed_matrix.mtx decompressed_features.tsv 

decompressed_barcodes.tsv -j 

scRNA_expression_decompression_gene.json 

 
Decompression (gene id – don’t decompress barcodes): 
./linux_executable -d -i compressed_file.bin -o 

decompressed_matrix.mtx decompressed_features.tsv 

decompressed_barcodes.tsv -j 

scRNA_expression_decompression_gene_no_barcodes.json 

 
Note that the decompressed matrix.mtx file is only guaranteed to be same as original up to 
reordering since the original mtx file might not be sorted according to a specific criterion (by 
row/column). 
 

4.4 Conclusions 

We observe that the proposed file format offers improved compression and fast random access 
across a variety of file types, while offering a high degree of customizability and ability to 
incorporate additional specialized compressors. 
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