
1

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/M52159

January 2020, Brussels, BE

Source ISO/IEC JTC1/SC29/WG11

Status Input Document

Title Proposal of a Unified File Format for the Coding of Genomic Annotations

Authors Shubham Chandak (Stanford University), Patrick Y.H. Cheung (Royal Philips)*,

Qingxi Meng (University of Illinois at Urbana-Champaign), Mikel Hernaez (Center

for Applied Medical Research at University of Navarra, UIUC), Idoia Ochoa (Tecnun

at University of Navarra, UIUC)

* Corresponding Author

1. Introduction

Several biological studies produce genomic annotation data such as mapping statistics,
quantitative browser tracks, variants, genome functional annotations, gene expression data and
Hi-C contact matrices. These are currently represented in different formats such as VCF, BED,
WIG, etc., leading to issues with interoperability and the need for frequent conversions between
formats in order to visualize this data. Furthermore, the lack of a single format has stifled the work
on compression algorithms and has led to the widespread use of suboptimal compression
algorithms based on gzip (e.g., BCF [1], BigWig [2], etc.) that do not exploit the significant
structure present in these formats. These algorithms do not exploit the fact the annotation data
typically comprises of multiple fields (attributes) with different statistical characteristics and instead
compress them together. Thus, while these algorithms support efficient random access with
respect to genome position, they do not allow extraction of specific fields without decompressing
all the attributes. While there have been some works [3,4] on decomposing the data into attributes
and compressing them independently, there is limited adoption due to lack of standardization.
These works are unable to achieve optimal compression because of reliance on a small set of
standard compressors and are limited to only one type of annotation data. Furthermore, the
existing solutions lack in support for features such as selective encryption and ability to link
multiple annotation datasets with each other and with sequencing data. Many of these specialized
solutions are based on disk-based array management tools like TileDB and HDF5 which provide a
good base framework but lack several high-level features like support for metadata, linkages and
attribute-specific indexing.

We propose a unified file format capable of storing the annotation data, while allowing support for
functionalities such as fast query, random access, multiple resolutions (zooms), selective
encryption, authentication, access control and traceability. The format achieves significant
compression gains over gzip by separating different attributes of the data and allowing the use of
specialized compressors for these. Finally, the format supports metadata and linkages to the
sequencing data associated with the annotations as well as linkages to other annotation data from
the same study, allowing seamless integration with the existing MPEG-G file format for sequencing
data [5].

2

The format represents the data as a multidimensional array (tables) with each cell consisting of
multiple attributes. A single file can contain multiple such tables to support multiple resolutions of
the same data. Each cell in the table consists of multiple attributes that are compressed separately
for improved compression and selective access to attributes. The framework supports a variety of
compressors specialized for different data types. The format also supports compression of one
attribute using other attributes as side information/context. The format also supports embedding a
compressor executable within the file format itself, with appropriate security protections. For
multidimensional arrays, the format also supports additional dimension-specific attributes that
share the same value for all cells across a dimension.

To achieve efficient random access, the array is divided into chunks. The chunks can be of a fixed
size or variable size, with an option to use the same chunks for all attributes or not. An index
allows fast access to any given position in the data by only decompressing the corresponding
chunk. To support fast random access based on the values of certain attributes, one can also
include attribute-specific indexes. The format also provides a mechanism for sharing of codebooks
or statistical models needed for decompression across chunks.

Finally, the format consists of protection (access control) information at multiple levels in the
hierarchy that allows fine-grained security settings. Similarly, the metadata and attributes allow an
effective way to link different types of annotation data as well as sequencing datasets. The format
can be used as a standalone file or as part of an MPEG-G file. Overall, the proposed format
provides a standardized framework with sufficient flexibility to achieve state-of-the-art compression
performance on a variety of data types by incorporating the appropriate compression techniques
for the attributes in question.

2. File Format and Technology

In this section, we first introduce some terminology and then describe the different components of
the file format following a top-down approach. The various features described above are described
in the relevant components of the file. In Section 2.8, we discuss the integration into a MPEG-G
file, linkages and access control. In Section 2.9 we describe the decompression process which
illustrates several of the advantages of the file format. Finally, Section 2.10 discusses methods to
open the file in edit mode, allowing efficient updates to parts of the file.

2.1 Terminology

Annotation file: The top-level structure which can consist of multiple tables along with some
additional metadata and protection information. For example, the multiple tables can be used to
store the data at multiple resolutions.

Table: Each table is an independent entity, storing an array consisting of different attributes.

Attribute: Each cell in a table can store multiple attributes, where each attribute has a specific
datatype and is compressed using a specific compressor. This allows better compression and also
selective access to attributes. For example, in a genome functional annotation file, the attributes
could be chromosome, start position, end position, feature ID, feature name and so on.

Dimension: Tables can be single dimensional (e.g., genome annotation data, quantitative browser
tracks) or multidimensional (e.g., Variant call data, gene expression data for multiple samples are
2-dimensional). Note that single dimensional tables can also hold multiple attributes. See Figure 1
below for an illustration.

3

Dimension-specific attributes: When the array is multidimensional, the table might store certain
dimension specific attributes along with the attributes for the main table. Each dimension specific
attribute can be thought of as being part of a 1-dimensional table. For example, variant data for
multiple samples can be represented using a 2-dimensional table, with the sample genotypes and
sample level likelihoods being attributes for the main 2-d array, while the variant position and
sample name being dimension specific attributes. See Figure 1 below for an illustration.

Chunk: The attributes in the table are compressed in rectangular chunks to allow efficient random
access. The chunks can be of fixed size or variable size. An index is stored for efficiently
determining the position of a specific chunk in the compressed file.

Attribute 1
Attribute 2
Attribute 3

Attribute 1
Attribute 2
Attribute 3

Attribute 1
Attribute 2
Attribute 3

Attribute 1
Attribute 2
Attribute 3

.

.

.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Attribute 1
Attribute 2
Attribute 3

.

.

.

Row Attribute 1
Row Attribute 2

. . . . Column Attribute 1

Dimension 2 (columns)

Dimension 1
(rows)

2-dimensional array

1-dimensional data 2-dimensional data

Figure 1: Illustration of 1-dimensional and 2-dimensional data with multiple attributes. The 2-
dimensional data contains dimension-specific attributes in addition to the main 2-dimensional
array.

2.2 Top-Level File Format

File Header

File protection

File metadata

File traceability

Table information and index

Compression parameters

Table 1
Table 2

Table 3
Table 4

File

Table

Figure 2: Illustration of top-level file format.

4

§T1: Annotation file

Field Brief Description Type

FileHeader file_header (§T2)

FileProtectionInfo Access control policy gen_info (§T3)

FileMetadata Metadata/Linkage gen_info (§T3)

FileTraceabilityInfo Commands used to generate data gen_info (§T3)

nTables
Number of tables stored in file (e.g., multiple
resolutions)

For i in 1…nTables:

 TableID[i] Unique table identifier Integer

 TableInfo[i] Table information (e.g., resolution) gen_info (§T3)

 ByteOffset[i] Byte offset of table i in file Integer

nCompressors
Number of distinct compressors used in the different
attributes stored later

Integer

For i in nCompressors:

 Compressor[i] comp_info (§T4)

For i in 1…nTables:

 Table[i] table (§T5)

§T2: File header (file_header)

Field Brief Description Type

FileName String

FileType e.g. “Variant”, “Gene Expression”, etc. String

FileVersion For keeping track of updates String

§T3: General information structure (gen_info)

Field Brief Description Type

PayloadSize To allow skipping over this Integer

Payload Compressed with predefined compressor (e.g., 7z) Bytes

Description:

 The file format supports storage of protection information for access control, metadata,
versioning and traceability. While these allow a generic representation compressed with
7zip, in practice one would typically use standard JSON/XML/XACML based schemas for
this information along with standard URI (uniform resource identifier) notation (e.g., as
done in MPEG-G part 3 [5]). See Section 2.8 for more details.

 The proposed file format stores the annotation data in multiple tables, where different
tables can be used to store the data at different resolutions, among other possible
applications. The basic information about the table such as the resolution level can be
extracted without needing to read the whole file using the TableInfo field in some standard

5

JSON/XML-like format. Similarly, the byte offset of the tables in the compressed file are
available to directly jump to a specific table.

 The file stores a list of compressors indexed by unique identifiers. These can be referred to
in the tables, thus avoiding repeated description of compressors used in multiple tables or
for multiple attributes. See Section 2.3 for details.

 Finally, the file stores the tables (Section 2.4).

2.3 Compressors

§T4: Compressor information structure (comp_info)

Field Brief Description Type

CompressorID Unique compressor identifier String

nDependencies
To allows compression of an attribute based on
values of other attributes

Integer

CompressorNameList List of compressor names (or “EMBEDDED”) List(String)

CompressorParametersList Parameters required for decompression List(gen_info)

Description:
This structure stores the description of a compressor. The unique CompressorID is used within the
tables to point to a compressor. The compressor name and parameters can be used for a
standard compressor (listed below) or it can be used for describing the decompression mechanism
within the CompressorParameters by setting CompressorName to “EMBEDDED”. Multiple
compressors can be applied in sequence using a list.

The format supports compression of an attribute using other attributes as side information (as long
as there is no cyclic dependency). The variable nDependencies denotes the number of
dependency attributes needed for the decompression (the corresponding attributeIDs are specified
in §T6). Compressors like context-based arithmetic coding can easily support the incorporation of
side information. Another mechanism to incorporate the side information from other attributes is to
reorder or split the values of the current attribute based on the values of the other attributes, which
can bring together similar values and provide better compression. The parameters describe the
dependencies used by each compressor in the list.

The attribute information structure (§T6) supports storage of additional data required for
decompression, which is common to all chunks, in the variable CompressorCommonData. This
can be useful for storing codebooks, dictionaries or statistical models computed from the entire
data.

Non-exhaustive list of standard compressors:

 Run length encoding: for long runs with same value, replace by value and length of run.

 Delta encoding: for increasing sequences of numerical values, replace by difference
between consecutive values.

 Dictionary-based/enumeration: for attributes taking values from a small set of options,
replace by index in the set and store the dictionary in CompressorCommonData.

 Sparse: for attributes that rarely differ from the default value (specified in §T6), represent
as coordinate position and value for the non-default values. The coordinate positions can
be further delta coded within each chunk to improve compression, for example, in a 2-
dimensional sparse array, the row index can be delta coded and the column index can be
delta coded within each row.

 Variable length array: separate variable length arrays into value stream and length
stream.

6

 Tokenization: for structured string attributes, split into tokens of different types and encode
each token in terms of previous value (e.g., match with previous token, delta, new value,
etc.).

 No compression: can be useful for faster selective access.

 General purpose compression/entropy coding methods: gzip, bzip2, 7-zip, adaptive
arithmetic coding, BSC (http://libbsc.com/).

Note that this list is not exhaustive and specialized compressors for different attributes can be
supported for certain applications. For example, several specialized compressors such as GTC [6]
exist for genotype data in variant call supporting fast random access to rows/columns.

Some compressors above produce multiple streams, e.g., the coordinates and values for the
sparse compressor. These can be further compressed using different entropy coders by specifying
the appropriate parameters. For example, if

CompressorNameList = [‘sparse’,’gzip’,’7-zip’]

CompressorParameterList = [

{“outStreams”: [“coordinate”, “value”]},

{“inStreams” : [“coordinate”]},

{“inStreams” : [“value”]}

]

then gzip is applied to the coordinate stream and 7-zip is applied to the value stream (here we
used JSON for representing the parameters). This enables the application of optimal compressors
for each data stream. If the streams are not specified, the compression is applied to all the
incoming streams.

Embedded compressor: In case of embedded compressors, the decompression executable is
put in the compression parameters along with the digital signature as a proof of origin and
authenticity to protect against malicious software. For interoperability across different platforms, a
standardized virtual machine bytecode should be used for the decompression executable.

2.4 Table

Table Header
Table protection

Table metadata

Table summary statistics

Attribute information

Attribute 1
Attribute 2

Attribute 3

Index

Data

Table

Figure 3: Illustration of table structure for the one-dimensional case.

7

§T5: Table

Field Brief Description Type

TableID Same as in §T1 gen_info (§T3)

TableInfo Same as in §T1 gen_info (§T3)

TableProtection Access control policy gen_info (§T3)

TableMetadata Metadata/Linkage gen_info (§T3)

SummaryStatistics e.g., Count, Average value List(Key-value)

nDimensions Number of dimensions Integer

For i in 1…nDimensions:

 Size[i] Size of dimension i Integer

 DimensionName[i]

 DimensionMetadata[i] Metadata/Linkage gen_info (§T3)

If nDimensions == 2:

 SymmetryFlag True if 2d array is symmetric Bool

nAttributesMain

For i in 1…nAttributesMain:

 AttributeInfoMain [i] attr_info (§T6)

ByteOffsetMain Byte offset of IndexMain Integer

If nDimensions > 1: Dimension-specific attributes

 For i in 1…nDimensions:

 nAttributesDim[i]
Number of dimension specific
attributes

Integer

 For j in 1…nAttributesDim[i]:

 AttributeInfoDim[i][j] attr_info (§T6)

 ByteOffsetDim[i] Byte offset of IndexDim[i] Integer

IndexMain index (§T7)

DataPayloadsMain data (§T9)

If nDimensions > 1: Dimension-specific attributes

 For i in 1…nDimensions:
// each of these are treated as a 1-d
array

 IndexDim[i] index (§T7)

 DataPayloadsDim[i] data (§T9)

Description:

 Just like the top-level file structure, each table consists of access control and metadata
(discussed in Section 2.8). The table also contains some summary statistics (typically
averages, counts or distributions) for fast access.

 For each dimension within the table, we store the size, name, metadata. For the 2-
dimensional case, we also store a flag denoting whether the matrix is symmetric (e.g., Hi-C
data which is symmetric).

 We have the attributes for the main table – for these we store the information (Section 2.5)
and also the byte offset of the data for the main table.

 This is followed by a list of dimension-specific attributes (Section 2.5). We also store the
byte offset of the data for each dimension, allowing selective access to the attributes for a
particular dimension.

8

 Finally, the table stores the index and data for the main table and each dimension (if
applicable).

 Note that dimension-specific attributes are considered to be one-dimensional arrays in the
following sections for chunking, indexing etc.

2.5 Attributes

§T6: Attribute information structure (attr_info)

Field Brief Description Type

AttributeInfoSize To allow skipping over structure Integer

AttributeID Unique attribute identifier Integer

AttributeName String

AttributeMetadata Metadata/Linkage/Grouping of attributes gen_info (§T3)

AttributeType
Fundamental types (e.g., int, char, float, string) or
derived types (e.g., fixed-length, variable-length
array)

String

DefaultValue For sparse encoding if most values match default Attribute Type

SummaryStatistics e.g., Count, Average value List(Key-value)

CompressorID Compressor used for this attribute Integer

For i in 1…nDependencies: nDependencies defined in §T4

 If nDimensions > 1:

 Dimension

If this is an attribute of the main n-dimensional
table, this tells which dimension contains the
dependency attribute (set to nDimensions+1 if
dependency attribute is also in main n-
dimensional table)

Integer

 AttributeID Attribute ID containing the dependency Integer

CompressorCommonDataSize Integer

CompressorCommonData
To store codebooks/statistical models for the
compressor that are common to all chunks

Bytes

Description:

 For each attribute, we specify the unique identifier, name and metadata.

 The AttributeType can be either
o a fundamental type like character, string (null terminated), float, double, Boolean,

signed and unsigned integers with different bitwidths.
o Derived type like variable length or fixed length arrays.

 The DefaultValue of the attribute allows us to use sparse encoding when most values are
equal to the default.

 Each attribute can contain certain summary statistics (typically averages, counts or
distributions) for fast access.

 The compression method used for the attribute is specified using the compressorID. In
case the compressor uses side information/context during the decompression process, the
corresponding dependency attributes must also be specified. In case of multidimensional
arrays, the side information can either be obtained from the multidimensional array
attributes or from a dimension specific attribute. For example, in a VCF file, one could use
a variant specific field (which is a dimension specific attribute) as side information for
compression of genotype data (which is an attribute of 2-dimensional main table).

 As previously mentioned in Section 2.3, the attribute information structure (§T6) supports
storage of additional data required for decompression, which is common to all chunks, in

9

the variable CompressorCommonData. This can be useful for storing codebooks,
dictionaries or statistical models computed from the entire data.

2.6 Chunks and Indexing Structure

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 5

Start index

End index

Byte offset

Additional Index 1
Additional Index 2

Additional index 3

Attributes indexed

Index type

Index data

Index

Figure 4: Illustration of index structure for the one-dimensional case when the flag
AttributeDependentChunks is False.

§T7: Index structure (index)

Field Brief Description Type

AttributeDependentChunks
Flag denoting whether chunks sizes are
dependent on the attributes or if same
chunking is used for all atttributes

Bool

If not AttributeDependentChunks:

 ChunksStructure chunks (§T8)

Else:

 For i in 1…nAttributes:

 ChunksStructure[i]

// Additional attribute specific indexes

nAdditionalIndexes

Number of additional indexes for faster
query based on certain attributes (e.g.,
chromosome and position) – these return
the chunk number(s) containing the
desired query results

Integer

For i in 1…nAdditionalIndexes:

 AttributeIDsIndexed[i] List of attributes indexed List(Integer)

 IndexType[i]
Index type (e.g., CSI index for
chromosome and genomic position or B-

String

10

tree for database type queries)

 IndexSize[i] To allow skipping over index Integer

 IndexData[i]
Actual index data, specifics depend on
IndexType[i]

Bytes

§T8: Chunks structure (chunks)

Field Brief Description Type

nChunks Number of chunks Integer

VariableSizeChunks
Flag denoting whether chunks sizes are
variable or fixed (except at the boundary of
each dimension)

Bool

If VariableSizeChunks:

 For j in 1…nChunks:

 For k in 1…nDimensions:

 StartIndex[j][k] Start position of chunk along dimension k Integer

 EndIndex[j][k] End position of chunk along dimension k Integer

 ByteOffset[j] Byte offset of chunk j in file Integer

Else:

 For k in 1…nDimensions:

 ChunkSize[k]
For fixed size chunks, sufficient to store
size of chunk in each dimension

Integer

 For j in 1…nChunks:

 ByteOffset[j] Byte offset of chunk i in file Integer

Description:

 Depending on whether AttributeDependentChunks is true, we can use the same
chunking for all attributes or attribute dependent chunking.

o Using the same chunking for all attributes requires much smaller index structure
and is useful when most of the time all attributes within a chunk are queried.

o Using attribute dependent chunking is useful when the optimal chunk size for
different attributes with respect to compression and random access varies a lot. For
example, if some attributes are sparse while others are dense, using the same
chunk size might lead to suboptimal compression. It can also be useful when most
of the time all chunks for a single attribute are queried.

o The organization of the chunks and attributes depends on the mode of operation, as
shown in Figures 7 and 8 and in §T9.

 The rectangular chunks can be fixed size or variable size depending on the
VariableSizeChunks flag. While fixed size chunks are simpler to deal with, especially for
multidimensional tables, variable size chunks can be useful when the sparsity of the data is
highly varying and hence choosing a single chunk size is not optimal. In some cases,
variable size chunks can allow chunks based on an attribute such as chromosome/genome
position, which can allow faster random access with respect to those attributes.

 In case of variable size chunks, we store the start and end index in the table for each chunk
along each dimension. In case of fixed size chunks, we just need to store the chunk size
along each dimension. In both cases, we store the byte offset of each chunk in the file for
random access. Figures 5 and 6 illustrate the chunks and the corresponding index.

11

 In a number of applications, random access with respect to row number or column number
is not meaningful, instead random access with respect to certain attributes is desired.
For example, random access with respect to genome position is frequently required. The
proposed format supports a flexible mechanism for such applications. We can store any
number of additional attribute specific indices by providing the type of the index from a
standard set (e.g., B-tree for database type queries, R-trees or CSI index [7] for range
queries), the attributeIDs (e.g. chromosome, position) and the actual indexing data stored
in a binary format. The genomic range indexing can store the leftmost and rightmost
coordinate for each chunk, allowing quick identification of the chunks overlapping the
queried range. Similarly, the B-tree index can store a map from the attribute value to the
chunk containing the value and the position of the value within the chunk.The lookup based
on these works as follows:

o The user specifies a query (e.g., attribute=”abcd” or attribute between 1 and 10000,
etc.).

o The attribute specific index returns the chunk number(s) that contain values that
match the query condition.

o Then these chunks are recovered using the chunk index, filtering out values that
match the condition (because chunks can also contain non-matching values).

 Note that the data in different chunks are compressed independently. However, global
compression data can be shared across chunks using the CompressorCommonData
mechanism (§T6).

 For symmetric 2d arrays (when SymmetryFlag in §T5 is true), the chunks only need to
cover the lower triangular part and the diagonal. The decompression process takes care of
the upper diagonal values by filling in the corresponding lower triangular values. For all
other cases, the chunks must cover the entire range of indices without overlapping.

11

5
nchunks: 15
VariableSizeChunks: False
ChunkSize[1]: 5
ChunkSize[2]: 11
For j in 1..nChunks:

ByteOffset[j]

Figure 5: Illustration of fixed size chunks and the corresponding indexing data for a 2-dimensional
array.

12

1

4

2

3

17

17

nchunks: 4
VariableSizeChunks: True
// Chunk 1
StartIndex[1][1]: 1
EndIndex[1][1]: 17
StartIndex[1][2]: 1
EndIndex[1][2]: 17
ByteOffset[1]
// Chunk 2
StartIndex[2][1]: 1
EndIndex[2][1]: 11
StartIndex[2][2]: 18
EndIndex[2][2]: 31
ByteOffset[2]

.

.

.

6

14

11

6

Figure 6: Illustration of variable size chunks and the corresponding indexing data for a 2-
dimensional array.

2.7 Data Payloads

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 5

Attribute 1
Attribute 2

Attribute 3

Payload Size

Payload

Data

Figure 7: Illustration of data payload structure for the one-dimensional case when the flag
AttributeDependentChunks is False.

13

Attribute 1
Attribute 2

Attribute 3

Chunk 3
Chunk 4

Chunk 5

Data

Payload Size

Payload

Chunk 2
Chunk 1

Figure 8: Illustration of data payload structure for the one-dimensional case when the flag
AttributeDependentChunks is True.

§T9: Data Payloads

Field Brief Description Type

If not AttributeDependentChunks:

 For i in 1…nChunks:

 For j in 1…nAttributes:

 Payload Size[i][j] To allow skipping over certain attributes Integer

 Payload[i][j] Compressed payload Bytes

Else:

 For j in 1…nAttributes:

 For i in 1…nChunks:

 Payload Size[j][i] Integer

 Payload[i][j] Compressed payload Bytes

Figures 7 and 8 illustrate two modes of storing the data based on the flag
AttributeDependentChunks. The pros and cons of these modes are discussed in Section 2.6.

2.8 Linkages, Interoperability with MPEG-G and Access Control

2.8.1 Organization within MPEG-G file

While we describe the format as an independent file format here, it can also be used as part of an
MPEG-G file by storing it in a dataset. Note that an MPEG-G file can store the data for an entire
study, with each dataset group typically corresponding to an individual. Each MPEG-G dataset
group is further divided into datasets corresponding to different sequencing runs.

For storing the data corresponding to a single individual, the different annotation files can be
incorporated as distinct datasets as shown below, each dataset containing a single annotation file
or sequencing data.

14

Dataset group (single individual) -->
 Dataset 1 (sequencing data)
 Dataset 2 (sequencing data)
 Dataset 3 (variant call data)
 Dataset 4 (gene expression data)
 …

For collecting annotation data from a larger study, we can organize as follows:

Dataset group (large study) -->
 Dataset 1 (variant call data) -->
 Annotation file (sample 1)
 Annotation file (sample 2)
 …
 Dataset 2 (gene expression data) -->
 Annotation file (sample 1)
 Annotation file (sample 2)
 …
 …

Note that the different annotation files can be merged together for improved compression and
analysis performance.

Dataset group (large study) -->
 Dataset 1 (variant call data) -->
 Annotation file (all samples)
 Dataset 2 (gene expression data) -->
 Annotation file (all samples)
 …

The existing dataset header structure needs to be augmented with additional fields to support the
data type (sequencing/variant/gene expression/…), the number of annotation files contained in the
dataset, and the byte offset of each of these files.

When a compressor is shared across annotation files or across datasets, it’s parameters can be
stored at the dataset level or dataset group level, respectively. The annotation file in that case
contains a compressor structure with compressor name “POINTER” and the compression

parameter storing the location, e.g., {“DatasetGroupId”: 1, “DatasetId”: 2,

“CompressorId”: 5} denotes that the compressor is as specified in the 5th compressor in

dataset group 1, dataset 2.

2.8.2 Linkages

The format provides a mechanism to store linkages between different types of annotation data and
the corresponding sequencing data.

2.8.2.1 Metadata-based linkage

The dataset groups or datasets storing the sequencing data or the related annotation data can be
specified in the FileMetadata or TableMetadata using a standard URI (uniform resource identifier)
notation as described in MPEG-G part 3 [5] or using JSON. For example, to provide linkage to a
sequencing dataset, the following JSON can be used in the FileMetadata:

15

“Linkages”: [{

 “DataType” : “Sequencing”,

 “DatasetGroup” : 5,

 “Dataset” : 2

 }]

While the example shows only a single linkage, one can have multiple linkages.

One can also have Table level linkages. There can be two types:

- By index – in this case, the nth row (column) in one table corresponds to the nth row
(column) in another table. This can be useful to avoid repetition when multiple annotation
files/tables share the same rows/columns (e.g., multiple VCFs that are not yet merged and
consist of the same variants). Similarly, this is useful when the information about the
samples is stored in a single table, and both VCF and gene expression tables link to this.

- By value – in this case, a specific attribute is linked by matching value to an attribute in
another table. For example, the gene expression data might consist of only the gene
names while the detailed information about the genes is available in another file. An
example use case for such a linkage might be a query requesting gene expression data for
all genes in the MHC (major histocompatibility complex), which corresponds to
autoimmune diseases and specifies a range of coordinates in chromosome 6 for humans.
To address this query, the gene names for the coordinate range can be obtained from the
gene information file based on a genomic coordinate index and then these names can be
queried in the gene expression file to the get the required data.

Examples:
Linking rows (dimension 1) with rows of another table (table no. 3 in same annotation file):

“Linkages”: [{

 “Type” : “byIndex”,

 “DimensionInCurrentTable” : 1,

 “Table” : 3,

 “DimensionInLinkedTable” : 1

 }]

Linking columns (dimension 2) with rows of another table by value of attribute. (attribute 2 in
dimension 2 of current table linked to attribute 5 in dimension 1 of table 3 in dataset 4, file 2).

“Linkages”: [{

 “Type” : “byValue”,

 “DimensionInCurrentTable” : 2,

 “AttributeInCurrentTable” : 4,

 “Dataset” : 4,

 “AnnotationFile” : 2,

 “Table” : 3,

 “DimensionInLinkedTable” : 1,

 “AttributeInLinkedTable” : 5,

 }]

Since the metadata structure supports arbitrary information storage, the framework can be
extended even further to link more than 2 tables by using a standardized format (e.g., table 3 can
translate the gene ids used in table 1 to the gene names in table 2). Also note that while the
examples shown above use a specific JSON based format for linkages, one can also use other
formats like XML.

16

2.8.2.2 Attribute-based linkage

The metadata-based linkage is useful for high level linkages, but in some cases, we need linkage
for each row/column. For example, in a VCF file with multiple samples, the sequencing data
corresponding to particular samples can be linked by adding attributes SequencingDatasetGroup
and SequencingDataset to the column attributes. Such linkage attributes should have
“LinkageAttributeFlag” set to True in the metadata to allow the decompressor to distinguish linkage
attributes from normal attributes.

In some cases, there is a need to map between annotation datasets according to genomic region.
In most cases, this should be achieved by separately indexing each of the datasets. Thus, to find
the sequencing data corresponding to a region in the VCF file, one can look up the master index
table of the sequencing data and find the appropriate access unit(s). Using separate indexing for
different datasets allows the choice of optimal chunk sizes and other parameters for each of the
datasets. Furthermore, in some cases direct linking of a variant to an AU might not be possible
due to different AU classes. Similarly, in VCF files with multiple samples, the variant maps to the
access units across several datasets and storing this information can take up significant storage.

If relevant, one can also store the AUId or byteoffset in the sequencing data as a row attribute in
the VCF file, allowing quick lookup of the access unit corresponding to the current variant.

We can also map a gene to a list of variants by using a list-type attribute to the genes.

2.8.3 Access control

The access control policy can be specified at both the file level and the table level, typically using a
standard format such as XACML.

Certain users might have access to all the data, while others might have access only to coarse
resolution data (recall that different resolutions are stored in different tables). This type of policy
should be specified at the file level.

On the other hand, policies specific to the attributes within a table should be specified at the table
level. This can include access to only a subset of attributes, or access only to certain chunks
based on the value of some attribute. Another type of policy could allow access to the metadata
and information but not to the actual data.

2.9 Decompression Process

We next describe the query types supported and the corresponding decompression methods.
These are not mutually exclusive and aspects of these can be combined together, e.g,
decompressing both the metadata and certain attributes or decompressing selected attributes from
selected chunks. Also note that the access control policy might restrict some of these queries.
Standardized APIs similar to MPEG-G part 3 [5] can be used to support these.

Metadata/information queries

Only metadata and information about the tables (e.g., resolution level), compressors, attributes
and/or chunks requested.

1. The top-level information in §T1 can be directly accessed at the beginning of the file.

2. The table-specific metadata/attribute details can be accessed by using the ByteOffset of
the table specified in §T1.

17

Complete data decompression

Decompression of the entire data, including all tables and attributes.

1. First the top-level metadata and table information is read

2. Then the compression parameters are loaded

3. For each table:

a. The table information, the dimensions and the attributes are read.

b. The index is read to determine the positions of the chunks along each dimension

c. The data payloads for each chunk and each attribute are decompressed (this
process can be parallelized). If the attribute is compressed using another attribute
as a dependency/context, then we first decompress the other attribute. If the
attribute uses CompressorCommonData (§T6), that is loaded before
decompressing any chunks.

d. For 2-d symmetric arrays (see SymmetryFlag in §T5), we decompress only the
diagonal and lower triangular matrix, filling in the upper triangular part using
symmetry.

Decompression of only one table

Similar to “Complete data decompression” except that ByteOffset of the requested table (§T1) is
used to jump to the table and only that table is decompressed.

Query for selected attributes of a table

Similar to “Decompression of only one table” except that

 Only the information about the requested attributes is read (skipping over other attribites
using AttributeInfoSize variable in §T6).

 Only the requested attributes are decompressed by skipping over other attributes using
Payload Size[i][j] in §T9. When attribute dependent chunks are used, all the chunks for a
given attribute are stored together, and this process becomes straightforward (Figure 8).

Query only selected range of indices in the array

Similar to “Decompression of only one table” except that

1. The index is loaded and depending on the type of chunking (fixed size/variable size), the
chunks overlapping with the requested range are determined.

2. The ByteOffset in §T8 is used to jump to the payload for the chunks determined above. The
process is more efficient when attribute dependent chunks are not used and all the
attributes for a given chunk are stored together.

3. The requested chunks are decompressed and only the overlapping indices are returned.
Note that if the compressor of some attribute allows efficient random access within a
chunk, we utilize this to further boost the decompression speed. Some cases where this
might happen include sparse arrays or specialized compressors for genotypes such as
GTC [6].

Query based on value/range of certain attributes

Similar to “Query only selected range of indices in the array” except that

18

1. If an additional attribute specific index (§T7) is available for the attributes in question, it is
used to determine the relevant chunk(s).

2. If such an index is not available, we decompress the attributes in question for all the
chunks and determine the relevant chunks. Note that even when an additional index is not
used, we are still able to speed up the process since we only decompress some attributes
for all the chunks. The rest of the attributes need to be decompressed only for the relevant
chunks.

2.10 Folder Structure and Editing

The file format described above offers several advantages and is convenient for transmission,
long-term storage and fast querying. However, in case the data is kept on a single machine and
needs to be edited frequently, it is more suitable to store it in a directory/folder hierarchy using a
file manager. The folder hierarchy allows easy manipulation of parts of the data by modifying only
the files corresponding to a single chunk and attribute, rather than needing to overwrite the entire
file. When the editing is completed and the data needs to be transmitted, it can be converted back
to the single file format, which recomputes the index based on the data payload sizes and packs
the folder hierarchy back into one file. The conversion from the file format to the folder hierarchy
and back is straightforward, with each table becoming a folder, and within each table, each chunk
becomes a folder (assuming AttributeDependentChunks is False). In the folder hierarchy, the
index only needs to store the attribute-specific indexes since the chunks are already stored in
distinct folders. A simple example is shown in Figure 9.

Table Header
Table protection
Table metadata

Table summary statistics

Attribute information

Attribute 1
Attribute 2

Attribute 3

Index

Table

Chunk 1
Chunk 2

Chunk 3
Chunk 4

Chunk 5

Attribute 1
Attribute 2

Attribute 3

Payload Size

Payload

Data

File format Folder hierarchy

Ta
b

le

Header

Protection

Metadata

Summary statistics

Attribute
information

Attribute 1

Attribute 2

...Index

Data

Chunk 1

Attribute 1

Attribute 2

...

Chunk 2

Attribute 1

Attribute 2

......

 Figure 9: Conversion between file format and folder hierarchy for a single table. In the
folder hierarchy, the green boxes are files while the blue boxes are folders.

2.11 Examples

To illustrate how this format can be used for storing a variety of annotation data while providing the
relevant functionalities, we discuss two examples in this section.

19

2.11.1 Variant Call Data (VCF)

##fileformat=VCFv4.0

##fileDate=20090805

##source=myImputationProgramV3.1

##reference=1000GenomesPilot-NCBI36

##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

##FILTER=<ID=q10,Description="Quality below 10">

##FILTER=<ID=s50,Description="Less than 50% of samples have data">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT

NA00001 NA00002 NA00003

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ

0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ

0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ

1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ

0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 microsat1 GTCT G,GTACT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP

0/1:35:4 0/2:17:2 1/1:40:3

Table 1: A Simple VCF File Example (from IGSR)

Table 1 above shows a section of a VCF file, only 5 variants and 3 samples are displayed. We
next describe how this can be translated to the proposed file format while preserving the data and
providing additional functionalities:

Metadata

The comment lines (starting with ##) can be retained as part of the FileMetadata. If this is stored
as part of an MPEG-G file with sequencing data, the metadata also contains the corresponding
dataset groups that contain the sequencing data corresponding to this variant call data.

Traceability

When this is stored as part of an MPEG-G file with sequencing data, the traceability contains the
commands used for generating the variant calls starting from the raw sequencing data along with
the URIs of the tools used and their versions. This can be used to validate the file in a reproducible
manner.

Tables

Since variant data is typically stored in a single resolution, we store it in a single table with
nDimensions = 2.

Dimensional attributes

For the first dimension (variants), there are several dimensional attributes such as CHROM, POS,
ID, REF, ALT, QUAL, FILTER, and the INFO fields. The INFO field is broken into multiple
attributes such as NS, DP, AF, etc. as described in the comments. The types of these attributes

20

are also mentioned in the comment fields. The attribute metadata can be used for grouping these
together (e.g., NS, DP, AF belong to the group INFO). The default value depends on the attribute,
e.g., it can be set to “PASS” for the FILTER attribute.
For the second dimension (samples), the sample name (e.g., NA00001) is the only attribute
present in the original VCF file. Further attributes can be added to support linkages to the
sequencing data, e.g., the datasetGroup and dataset containing the sequencing data
corresponding to this sample.
More dimensional attributes can be added to support fast access to certain quantities such as
counts or average quantities corresponding to a particular variant.
The description of the INFO attributes in the comments can be stored as part of the
AttributeMetadata.

2-d table attributes

These are the attributes described in the FORMAT fields such as GT, GQ, DP, etc. each of which
is a 2-dimensional array. The types of these attributes are again described in the comments. In
cases where most variants are not expressed, the default value for the GT attribute can be set to
0/0.
The description of the attributes in the comments can be stored as part of the AttributeMetadata.

Compressors

The compressors for the attributes should be chosen based on the type and characteristics of the
attribute. For example, CHROM can be compressed using an enumeration-based scheme
followed by gzip, POS can be compressed using delta coding followed by gzip, etc. The sample
names (NA00001 etc.) can be efficiently compressed with a tokenization-based string compressor.
Some of the INFO fields are present for only a small number of variants, these can be encoded
with a sparse representation. Similarly, the genotypes (GT) can be encoded with a sparse
representation or with a specialized compressor for genotypes (e.g. GTC [6]).
The length of certain variable length attributes can depend on other attributes – e.g., the AF (allele
frequency) attribute length is equal to the number of alternate alleles. In such cases,
nDependencies for the compressor can be set to 1 and this dependency can be exploited to boost
the compression.

Chunking and Indexing

The chunking for the main 2d array can be performed depending on the access patterns. If most
accesses are for variants in a particular region, then each chunk should include all samples and a
small number of variants (i.e., horizontal chunks). Whereas if most accesses are for all variants for
a particular sample, the chunk should include all variants and a small number of samples (i.e.,
vertical chunks). If both types of queries are quite common, then it is better to use rectangular
chunks including a small number of variants and samples. By increasing the size of chunks,
random access performance can be traded off against compression ratio.

For random access based on the genomic region, an additional index can be used as shown in the
table below (based on CSI indexing [7]).

AttributeIDsIndexed CHROM, POS

IndexType CSI

IndexSize Size of index

IndexData CSI index structure

Rather than specifying the actual file position as done in CSI, this will instead return the list of
chunkIDs that overlap with the genomic region in question. The positions of these chunks in the

21

file can then be determined from the default index structure. If indel variants are prevalent, the CSI
indexing should be performed based on both START and END position of the variant.

More attributes can be indexed to allow fast random-access queries. E.g., the FILTER attribute
can be indexed to allow faster filtering of variants based on whether FILTER=PASS or not.

Protection

The access control policy can take various forms depending on the use case. Certain users might
have access to all the data, while others might have access only to variants within certain genomic
regions (specified by CHROM and POS). Similarly, one can restrict access to only certain
samples. Note that this requires that the chunks be chosen accordingly. The access control can
also be imposed at the attribute level, e.g., allowing access to the INFO fields but not to the
individual sample data.

2.11.2 Genome Functional Annotation Data (BED)

browser position chr7:127471196-127495720

browser hide all

track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2 itemRgb="On"

chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0

chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0

chr7 127473530 127474697 Pos3 0 + 127473530 127474697 255,0,0

chr7 127474697 127475864 Pos4 0 + 127474697 127475864 255,0,0

chr7 127475864 127477031 Neg1 0 - 127475864 127477031 0,0,255

chr7 127477031 127478198 Neg2 0 - 127477031 127478198 0,0,255

chr7 127478198 127479365 Neg3 0 - 127478198 127479365 0,0,255

chr7 127479365 127480532 Pos5 0 + 127479365 127480532 255,0,0

chr7 127480532 127481699 Neg4 0 - 127480532 127481699 0,0,255

Table 2: A Simple BED File Example (from UCSC Genome Browser FAQ)

Table 2 above shows a section of a BED file, with some annotation data. We next describe how
this can be translated to the proposed file format while preserving the data and providing additional
functionalities:

Metadata

The comment lines (first three lines) can be retained as part of the FileMetadata. If this is stored as
part of an MPEG-G file with sequencing data, the metadata also contains the corresponding
dataset groups that contain the sequencing data corresponding to this annotation data.

Tables

For displaying the data at different scales and resolutions, we store multiple tables with
precomputed values for different resolutions. The TableInfo field stores the details about the
resolution in a predefined format, hence allowing the user to query the list of available resolutions
without needing to read the whole file. The ByteOffset variable for each table allows direct access
to the desired resolution. Each table has a single dimension.

Attributes

In this case, each column becomes an attribute: chrom (string), chromStart (integer), chromEnd
(integer), name (string), score (integer), strand (character), thickStart (integer), thickEnd (integer),
itemRGB (8-bit integer array of length 3).

22

Compressors

The compressors for the attributes should be chosen based on the type and characteristics of the
attribute. For example, chrom can be compressed using an enumeration-based scheme followed
by gzip, chromStart and chromEnd can be compressed using delta coding followed by gzip, etc.
The values of thickStart and thickEnd are likely to be close to chromStart and chromEnd,
suggesting that we can improve the compression by using them as side information.
Note that in the example shown the value of chromStart matches the value of chromEnd on the
previous row. One way to exploit this would be to consider chromStart, chromEnd as a single
attribute of type “integer array of length 2”, but this should be done only if the visualization tools
understand this alternate representation.

Chunking and Indexing

For random access based on the genomic region, an additional index can be used as shown in the
table below (based on CSI indexing [7]).

AttributeIDsIndexed chrom, chromStart, chromEnd

IndexType CSI

IndexSize Size of index

IndexData The CSI index structure

Rather than specifying the actual file position as done in CSI, this will instead return the list of
chunkIDs that overlap with the genomic region in question. The positions of these chunks in the
file can then be determined from the default index structure.

Protection

The access control policy can take various forms depending on the use case. Certain users might
have access to all the data, while others might have access only to coarse resolution data (recall
that different resolutions are stored in different tables). Similarly, one can restrict access to only
certain genomic regions. Note that this requires that the chunks be chosen accordingly.

3. Implementation

Here we discuss the current implementation status for the accompanying file format description,
including the set of features in the format not implemented as of now. We also discuss results on
some of the MPEG-G annotation test data sets. The GTF compression is based on ideas from
GPress (https://github.com/qm2/gpress) which is noted at the appropriate places.

3.1 Storage Format

Note that the following major features are not supported by the current implementation but are
supported by the proposal:

1. Multiple tables (e.g., for multiple resolutions)

2. Variable length chunks (currently fixed length chunks are used along each axis which
automatically induces rectangular chunking for the main array in case of 2-d datasets)

3. Attribute-dependent chunks

4. In the case of compression of one attribute based on other attributes – currently only a
single dependency attribute is allowed, i.e., compression of one attribute conditioned on

https://github.com/qm2/gpress

23

two or more other attributes is not implemented. Also, compression of an attribute in a 2-d
array (e.g., VCF genotype) conditioned on a dimension-specific attribute (e.g., an INFO
field) is not implemented.

5. Linkage to MPEG-G parts 1-5

6. Embedding decompressor code/executable for a specific attribute compressor within the
compressed file

7. Including compressor global data (e.g., codebooks, dictionaries, trained models) that can
be shared across chunks

8. Other high-level features – protection/traceability

Below is the currently implemented file format.

Top-level

Name Description Type

TableName string

TableMetadata Stores headers (comment lines) for
VCF/matrix market file

string

TableType VCF/GTF/scRNA_expression string

nDim 1 or 2 uint8

DimSize[i] for i in nDim Size along each dimension uint32

DimName[i] for i in nDim Name of each dimension string

DimMetadata[i] for i in nDim Metadata of each dimension string

// nArrays = 1 if nDim = 1, =nDim+1
otherwise

For a 2-dimensional table, we have a
main array and 2 dimension-specific
(row & column) arrays

DimNattrs[i] for i in nArrays Number of attributes in each array uint32

For i in nArrays:
 For j in DimNattrs[i]:
 AttrParams[i][j]

Attribute parameters, discussed below See table
on
AttrParams

ChunkSize[i] for i in nDim Chunk size along each dimension uint32

numChunks[i] for i in nArrays Number of chunks for each array (the
2-d main array has rectangular chunks
organized in row-major fashion)

uint32

DimByteOffset[i] for i in nArrays Byte offset for each array (i.e., different
dimension-specific attributes and the
main array)

uint32

For i in nArrays: // go over the dimensional attributes
and the main attributes

 numAdditionalIndexes[i] Number of attribute-specific indexes uint8

 For j in numAdditionalIndexes[i]: Attribute-specific indexes

 AdditionalIndexType[i][j] 0 (chrom_pos), 1 (levelDB) uint8

 AdditionalIndexData[i][j] Binary data depending on index type Bytes

 For j in numChunks[i]: Main index

 ChunkByteOffset[i][j] This is for the random access to a
specific chunk in the array

uint64

 For j in numChunks[i]: Payload data

 For k in DimNattrs[i]:

 PayloadSize[i][j][k] Size of compressed payload for array
i, chunk j, attribute k

uint64

 Payload[i][j][k] Compressed payload for array i, chunk
j, attribute k

Bytes

24

AttrParams

Name Description Type

AttrName Name of attribute string

AttrMetadata Metadata, e.g., comment line
corresponding to attribute
(INFO/FORMAT field) in VCF or
“REQUIRED” in case of compulsory
attributes.

string

AttrType Attribute type (described below) uint8

DefaultValue Default value for attribute
represented as a string

string

MissingValue Missing value for attribute
represented as a string (e.g., “.”).
These are present in the
decompressed payload

string

// Compression parameters

deltaFlag Whether delta coding is to be applied Bool

CompressorName BSC/GZip string

dependencyFlag Whether this attribute is compressed
dependent on another attribute

Bool

If dependencyFlag:

 DependencyAttributeId Attribute id for the dependency
attribute

uint32

 DependencyTransform Reorder/GTF_start_end/GTF_strand
(discussed below)

uint8

sparseFlag Whether sparse coding is to be
applied

Bool

If sparseFlag:

 nDimSparse Dimensionality of the array (needed
to appropriately interpret the
coordinate and value streams)
(this is redundant as this information
can be obtained from the top-level
structure)

uint8

3.2 Attribute Types

Several attribute types are currently supported:

1. Fundamental data types: 8/16/32/64 bit signed/unsigned integers, float/double, char, bool
(1 byte). These are represented in binary in the decompressed payload.

2. Derived types:

a. String: represented as a 0 terminated char stream in the decompressed payload.
(we tried other representations such as separation into length and value streams
but those gave worse results when BSC was applied)

b. Start/end: for GTF files, we use a pair of uint32 to represent the start and end
values in the decompressed payload. This is helpful for applying the conditional
compression from GPress (GTF start end transform) where the start and end fields
are jointly transformed based on the feature column.

25

3.3 Compression Modes and Parameters

The attribute compression details are discussed below.

3.3.1 Delta Coding

Delta coding can be used on any integer data type and is applied to the value stream before any
sparse coding/conditional compression transformation. The integer bitwidth is kept the same after
delta coding.

3.3.2 Sparse Coding

For sparse coding, the coordinate (uint32) and value streams are separated. For 1-d arrays, the
coordinates are delta coded. For 2-d arrays, the row coordinates are delta coded and the column
coordinates are delta coded within each row. Finally, the coordinate and value streams are
concatenated with the number of values written at the start. The coordinates are represented as
uint32.

3.3.3 Compressors

The stream for a given chunk and attribute is compressed using BSC/GZip after all transforms are
applied. Gzip is used at level 9 (best compression) and BSC is used with flag (-b64 -e2). These
parameters are currently hardcoded in the implementation and are not part of the file format, only
the compressor name is stored for each attribute. BSC is used by default.

3.3.4 Conditional Compression

The file format supports conditional compression of one attribute based on another. We have not
implemented context-based arithmetic coding, which is a classic example for this. Currently, we
only allow a single dependency and make sure that there are no directed cycles in the
dependency graph.

3.3.4.1 Reorder Transform

Here we reorder the values of one attribute based on the values of another attribute, as shown in
the example below.

• Attribute 1
• 0, 1, 2, 2, 1, 0, 1, 1, 2, 1
• Attribute 2
• a, b, c, d, e, f, g, h, i, j
• Attribute 2 reordered according to attribute 1 values
• a, f, b, e, g, h, j, c, d, i

This allows BSC/GZip to exploit the dependency across attributes by bringing similar values
together. In information-theoretic terms, this can achieve the conditional entropy of one attribute
conditioned on the other (asymptotically). This is suitable when the dependency attribute takes on
relatively small number of unique values, in particular this might not be suitable for continuous
valued or integral data which has ordinal structure.

We use this for VCF genotype likelihood and dosage values (conditioned on genotype) and in GTF
for compressing the frame (conditioned on feature as done in Gpress).

26

3.3.4.2 GTF Start-End Transform

This is based on GPress and involves compression of the start & end attributes in the GTF file
based on the feature column (that can take value gene/transcript/exon etc.). The idea is to delta
code the end wrt the start. The start itself can be modified based on start or end of the previous
feature/transcript/exon. The precise algorithm used is shown below. Note that Gpress also uses
the strand value, but in our case, we figure out the strand value based on the start and end values
for consecutive exons and store this in the stream (this has very small contribution to size). This is
because conditional compression based on two attributes (feature+strand) is currently not
implemented.

3.3.4.3 GTF Strand Transform

The strand value is compressed conditioned on the feature column (based on GPress). Basically,
only the strand value for the gene needs to be stored (also the strand value for the first feature in
the chunk if it is not a gene).

27

3.4 Additional Indexes

Additional attribute-specific indexes are used to perform random access based on the value or
range of a given attribute. Currently the specific attributes being indexed are hardcoded for each
file type (VCF: chrom/pos, GTF: chrom/pos, gene id, scRNA_expression: gene id), ideally this
information should be made available in the file format itself.

3.4.1 ChromPos Index

This consists of a list of chromosome names (strings) and the leftmost and rightmost chromosome,
position pair in each chunk. This can be used to rapidly identify chunks overlapping with a given
genomic range.

3.4.2 LevelDB Index

LevelDB (https://github.com/google/leveldb) is a generic disk-based key-value. The key and value
are byte arrays. This can be used for creating a gene index for GTF or gene expression data
mapping the gene id to the chunk containing the gene as well as position within the chunk.
LevelDB creates multiple files in a folder which are tarred, compressed with BSC and stored in the
compressed file along with the compressed size.

3.5 Notes on Specific File Types Currently Tested

Here we describe the default configurations that were tested for three of the file types. It is
possible to change the compression parameters (e.g., disable delta coding, change BSC to Gzip,
add some dependency across attributes) by changing the JSON configuration during compression.

3.5.1 VCF

For a one-dimensional (i.e., with no samples) VCF, the first six columns become separate
attributes and the seventh column (INFO) is split into multiple attributes. CHROM is stored as a 8-
bit unsigned integer (chromosome name is stored as part of the ChromPos index), POS is stored
as a 32-bit unsigned integer and is delta coded. The INFO fields are stored as bool when they are
flags and as strings otherwise. The decompressed file might have a different ordering of the INFO
fields and in some cases, fields missing in the original file might be displayed in the decompressed
file with the value “.”. Thus, the decompressed file doesn’t match the original VCF byte by byte.

For two-dimensional (i.e., with samples) VCF, the FORMAT field is stored as a row attribute in
addition to the attributes mentioned in the previous paragraph. The SAMPLE name becomes a
column attribute and the actual genotype data is split by colons (“:”) and stored as a 2-d array of
multiple attributes based on the FORMAT field. The implementation also supports not splitting the
genotype fields as it might give slightly better compression in some cases.

Chunking is done for both rows and columns. Random access by genomic position range is
performed using the ChromPos index while random access by sample name is performed by first
decompressing all sample names (column attributes), identifying the relevant column number and
decompressing the relevant chunks.

https://github.com/google/leveldb

28

3.5.2 GTF (Based on GPress)

Here the columns become different attributes: chromosome is as done in VCF, start and end are
stored as a single attribute (as discussed before), strand is stored as a bool and the rest are stored
as string attributes. Note that this is just a 1-dimensional array. We use reorder transform for
frame, GTF start end transform and GTF strand transform (all dependent on feature column). Two
indexes are used – chromPos and LevelDB. The LevelDB index maps each gene id to the start
and end chunk and line with that gene id (where the end is delta coded wrt the start). This allows
us to access quickly identify the chunks and the lines within the chunk containing a specific gene
id (i.e., a gene and all its children transcripts, exons, etc.).

3.5.3 scRNA Expression (Matrix Market or TSV) (Partially Based on GPress)

This consists of three files: a matrix file with the expression values (stored as sparse 2-d integer
attributes with genes as rows and barcodes as columns), features.tsv file (stored as row attributes
– first attribute is the gene id, there might be more associated attributes, stored as string
attributes), barcodes.tsv file (single column attribute stored as a string attributes). A single large
column chunk is used since random access by barcode is not commonly used, while the rows are
divided into multiple chunks.

A LevelDB index is used, mapping the gene id to the chunk containing the gene id, the position of
the gene id in the chunk along the vertical axis and the position in the sparse 2-d array. When
random access by gene id is used, the whole barcode list is decompressed, and then only the
barcodes expressing the gene are written to the decompressed barcodes.tsv file. The
corresponding expression values are written to the .mtx file and the information associated with
the gene id is written to the features.tsv. We observed that the decompression of the barcodes.tsv
file takes up significant fraction of the decompression time and hence added a flag in the
decompression configuration to disable the barcode decompression when a specific gene id is
being decompressed.

Features of GPress not yet implemented:

- GFF3 file compression

- Bulk RNA seq expression compression

- Linking of GTF/GFF3 with gene expression

- Random access based on transcript ids/exon ids

3.5.4 Other File Types Not Yet Implemented/Tested

The following file types have not been tested and their parser not yet implemented (note that the
proposal does support these types).

- Mapping statistics

- Quantitative tracks (wig)

- Hi-C

- Bulk RNAseq

- Parser for scRNA expression files represented as HDF5/Loom

29

4. Performance Evaluation

All experiments were run on an Ubuntu 18.04 server with 2.2 GHz Intel Xeon processor. All tools
were run with a single thread (Gzip with default settings, BSC with “-b64 -2 -t1T” flag which is the
flag used in the end stage for the proposed compressor). The BSC version used here is as available
at https://github.com/shubhamchandak94/libbsc. The JSON configuration files and the commands
used for compression/decompression are mentioned below for each specific experiment. The
linux executable, the compressed bitstreams for the main experiments and the JSON
configuration files are provided with this proposal. The chunk size used was 10,000 (x 100) for 1
(2)-d VCF files, 10,000 for GTF files, 1000 for scRNA_expression files. The compressed bit streams,
executable and JSON configuration files are available here.

4.1 VCF

4.1.1 Variants Only (No Samples)

4.1.1.1 Datasets

Dataset
no.

Link

1 ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_somatic.vcf.gz

2 ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_structural_variations.vcf.gz

Dataset no. Uncompressed file size (bytes) Number of variants

1 347,839,686 4,417,937

2 3,689,444,771 28,953,093

4.1.1.2 Main Compression Results

Dataset
no.

Size (bytes) Compression Time Decompression Time

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed

1 347,839,686 33,813,985 28,799,010 18,593,682 7s 42s 22s 2s 17s 15s

2 3,689,444,771 209,297,354 165,315,184 131,286,050 46s 4m25s 2m42s 16s 2m8s 1m59s

We see close to 37% better compression over Gzip and around 20% better compression than BSC.
Most of the improvement is due to compression of columns independently as separate attributes
and due to delta coding of POS. The compression/decompression times are better than BSC but
worse than Gzip.

4.1.1.3 Random Access Results

For dataset no. 2, compared to ~2m for decompression of whole file, the decompression of chrom
22, position 20M-30M takes less than 2s. The chunk size used was 10,000.

4.1.1.4 Commands Used for Proposed Compressor

Compression:
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p

VCF -g -j vcf_1d_compression.json

https://github.com/shubhamchandak94/libbsc
https://office365stanford-my.sharepoint.com/:f:/g/personal/schandak_stanford_edu/EhKKsqgMPE1PmnmsyVw1QvYBXKMXkkIUYmEQsaVtoYms-A?e=QpLZZj
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_somatic.vcf.gz
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/homo_sapiens/homo_sapiens_structural_variations.vcf.gz

30

Decompression (whole file):
./linux_executable -d -i compressed_file.bin -o decompressed.vcf

Decompression (genomic range – update json file as needed):
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_range.json

Note that as discussed above in the VCF section, the decompressed file doesn’t match the original
VCF file byte by byte due to reordering of INFO fields.

4.1.2 Variants with Sample Genotypes (1000 Genome Project)

4.1.2.1 Datasets

Dataset
no.

Link

1 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1

_v3.20101123.snps_indels_svs.genotypes.vcf.gz

2 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase

1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

Dataset
no.

Uncompressed file size (bytes) Number of variants Number of samples

1 93,086,828,627 3,007,196 1,092

2 15,304,146,564 494,328 1,092

4.1.2.2 Main Compression Results

Dataset
no.

Size (bytes) Compression Time Decompression Time

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed

1 93,086,828,627 10,781,170,344 4,337,628,848 4,254,124,733 49m 3h36m 2h12m 12m 2h24m 1h36m

2 15,304,146,564 1,796,657,847 728,642,384 717,980,220 8m 36m 23m 2m 24m 15m

4.1.2.3 Random Access Results

For dataset no. 2, compared to ~15m for decompression of whole file, the decompression of
chrom 22, position 20M-30M takes 22s. Decompression of a single sample takes around 1m40s.
The chunk size used was 10,000 x 100.

4.1.2.4 Impact of Conditional Compression of GL and DS Fields

The table below shows the impact of using the conditional reorder transform for the DS and GL
attributes wrt the GT attribute (for dataset 2). We see that the sizes for these are reduced but the
GL still takes up most of the total space. Note that theoretically, we expect the maximum
improvement due to this transform on each of DS and GL to be bounded by the entropy of the GT.
That is, the improvement in this example cannot be more than 19.4 MB for each of GL and DS
(under certain ideality assumptions). A specialized compressor/lossy compressor for GL can lead
to huge savings in this regard.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

31

Compressor Mode Total size
(MB)

GT+DS+GL
(MB)

GT
(MB)

DS
(MB)

GL
(MB)

CDTC Without
conditional
compression

749.7 742.3 19.4 40.9 682

CDTC With conditional
compression
(default)

718.0 710.6 19.4 24.2 667

4.1.2.5 Commands Used for Proposed Compressor

Compression (default: use conditional compression of GL and DS based on GT):
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p

VCF -g -j vcf_2d_compression_default.json

Compression (don’t use conditional compression of GL and DS based on GT):
./linux_executable -c -i vcf_file.vcf.gz -o compressed_file.bin -p

VCF -g -j vcf_2d_compression_no_conditional.json

Decompression (whole file):
./linux_executable -d -i compressed_file.bin -o decompressed.vcf

Decompression (genomic range – update json file as needed):
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_range.json

Decompression (sample name – update json file as needed):
./linux_executable -d -i compressed_file.bin -o decompressed.vcf -

j vcf_decompression_sample.json

Note that as discussed above in the VCF section, the decompressed file doesn’t match the original
VCF file byte by byte due to reordering of INFO fields.

4.2 GTF

4.2.1 Datasets

Dataset no. Link

1 ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.chr.gtf.gz

2 ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.gtf.gz

Dataset
no.

Uncompressed file size (bytes) Number of lines Number of genes

1 1,162,883,375 2,736,850 58,676

2 1,163,163,881 2,737,564 58,735

ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.chr.gtf.gz
ftp://ftp.ensembl.org/pub/release-95/gtf/homo_sapiens/Homo_sapiens.GRCh38.95.gtf.gz

32

4.2.2 Main Compression Results

Dataset
no.

Size (bytes) Compression Time Decompression Time

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed

1 1,162,883,375 43,656,910 24,855,264 18,536,141 15s 1m8s 31s 5s 29s 18s

2 1,163,163,881 43,668,708 24,863,150 18,541,903 18s 1m9s 31s 5s 28s 18s

We see close to 60% better compression over Gzip and around 25% better compression than BSC.
Most of the improvement is due to compression of columns independently as separate attributes,
while a small contribution is made by the conditional compression ideas from Gpress (see below).
The compression/decompression times are better than BSC but worse than Gzip.

4.2.3 Random Access Results

For dataset 2, compared to 18s for decompression of the entire file, decompression of range
chr22:20M-30M took less than 1s, and decompression of a single gene took less than 1s. The
chunk size used was 10,000.

4.2.4 Impact of Conditional Compression Based on Feature Column (Ideas from
GPress)

Here we look at the results without applying the conditional compression ideas from GPress (for
the start/end, strand and frame columns) on the dataset no. 2. In the table below, we see that
applying the conditional compression leads to around 5% improvement overall, but the
improvement on the specific columns can be as high as 50%. Note that the last column “attribute”
takes up most of the space and hence a specialized compressor for this can significantly improve
the overall compression. Finally, note that the leveldb index takes up a very small size, partly
because the index is also kept compressed with BSC.

Component Size in bytes
Without conditional compression

Size in bytes
With conditional compression (default)

Chrom pos index 3384 3384

LevelDB gene index 349746 349852

Chunk index 2192 2192

seqname 16046 16046

source 227424 227424

feature 367876 367876

Start_end 6695274 5742458

score 16986 16986

strand 58652 22524

frame 263454 149328

attribute 11634274 11634274

TOTAL 19644947 18541903

33

4.2.5 Commands used for proposed compressor

Compression (default: use conditional compression of start/end, strand, frame based on feature):
./linux_executable -c -i gtf_file.gtf.gz -o compressed_file.bin -p

GTF -g -j gtf_compression_default.json

Compression (don’t use conditional compression of start/end, strand, frame based on feature):
./linux_executable -c -i gtf_file.gtf.gz -o compressed_file.bin -p

GTF -g -j gtf_compression_no_conditional.json

Decompression (whole file):
./linux_executable -d -i compressed_file.bin -o decompressed.gtf

Decompression (genomic range – update json file as needed):
./linux_executable -d -i compressed_file.bin -o decompressed.gtf -

j gtf_decompression_range.json

Decompression (gene id – update json file as needed):
./linux_executable -d -i compressed_file.bin -o decompressed.gtf -

j gtf_decompression_gene.json

4.3 scRNA_expression

4.3.1 Datasets

Dataset
no.

Link Comments

1 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz

scRNA-seq: 10k
heart cells from
an E18 mouse

2 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz

scRNA-seq: 10k
heart cells from
an E18 mouse

3 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz

scRNA-seq: 10k
Cells from a
MALT Tumor

4 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz

scRNA-seq: 10k
Cells from a
MALT Tumor

5 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz

scRNA-seq: 10k
brain cells from
an E18 mouse

6 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz

scRNA-seq: 10k
brain cells from
an E18 mouse

7 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz

scRNA-seq: 10k
PBMCs from a
healthy donor

8 http://cf.10xgenomics.com/samples/cell-
exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz

scRNA-seq: 10k
PBMCs from a
healthy donor

http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/heart_10k_v3/heart_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/malt_10k_protein_v3/malt_10k_protein_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/neuron_10k_v3/neuron_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_raw_feature_bc_matrix.tar.gz

34

Dataset
no.

Uncompressed file
size (bytes)

Number of genes Number of
barcodes

Number of entries in
sparse matrix

1 240,678,371 31,053 7,713 19,049,671

2 542,853,620 31,053 6,794,880 26,541,357

3 137,630,766 33,555 8,412 10,794,402

4 364,846,709 33,555 6,794,880 14,985,831

5 402,747,405 31,053 11,843 31,522,268

6 757,325,088 31,053 6,794,880 40,438,578

7 318,717,693 33,538 11,769 24,825,783

8 630,371,244 33,538 6,794,880 32,136,028

4.3.2 Main Compression Results

Dataset
no.

Size (bytes) Compression Time Decompression Time

Original Gzip BSC Proposed Gzip BSC Proposed Gzip BSC Proposed

1 240,678,371 58,913,493 63,451,206 14,587,061 11s 39s 19s 2s 25s 14s

2 542,853,620 108,442,884 108,331,318 53,941,730 25s 1m15s 53s 4s 47s 37s

3 137,630,766 35,582,444 36,602,020 9,622,149 7s 23s 11s 2s 15s 9s

4 364,846,709 72,131,344 68,688,884 38,162,432 18s 50s 37s 3s 30s 25s

5 402,747,405 95,748,877 102,746,848 21,798,784 17s 1m4s 32s 3s 43s 24s

6 757,325,088 152,000,818 153,468,180 67,004,508 34s 1m45s 1m6s 5s 1m3s 50s

7 318,717,693 77,266,573 81,889,186 18,787,268 14s 51s 24s 3s 33s 18s

8 630,371,244 127,244,744 126,217,478 60,783,568 28s 1m27s 56s 5s 53s 40s

We see close to 75% better compression over BSC/GZip on the “filtered” datasets (1, 3, 5, 7). The
improvement on the “raw” datasets is closer to 50%. This is because the main improvement in the
proposed approach is on the sparse matrix which is a bigger contributor in the filtered datasets
(see below). The compression/decompression times are better than BSC but worse than Gzip.

4.3.3 Random Access Results

For dataset 8, compared to 40s for decompression of whole file, decompression of a single gene
takes 12s. Most of this time is taken up for decompression of barcodes (since all barcodes are
compressed in a single chunk, we need to decompress all the barcodes and then output only the
ones that express the given gene). If the barcodes are not decompressed, the time for
decompression of a single gene reduces to less than 2s. The chunk size used here was 1000 genes.

4.3.4 Breakdown into Individual Components

We see below the breakdown of the size into individual components for Gzip, BSC and the
proposed compressor for dataset no. 6 which is a “raw” dataset. Note that “raw” datasets have
significantly larger barcode files than the “filtered” datasets. We see that the proposed approach
provides the most benefits for the sparse matrix due to the separation of coordinate and value
streams and the delta coding of the sparse coordinates. The index takes up a relatively small
fraction.

35

Compressor Barcode list Feature/gene info Sparse matrix Index Total

Uncompressed 129.1 MB 1.32 MB 626.9 MB 757.3 MB

Gzip 19.36 MB 0.25 MB 132.4 MB 152.0 MB

BSC 15.24 MB 0.17 MB 138.1 MB 153.5 MB

Proposed 15.24 MB 0.19 MB 51.33 MB 0.24 MB 67.00 MB

4.3.5 Commands Used for Proposed Compressor

Compression:
./linux_executable -c -i matrix.mtx.gz features.tsv.gz

barcodes.tsv.gz -o compressed_file.bin -p scRNA_expression -g -j

scRNA_expression_compression_default.json

Decompression (whole file):
./linux_executable -d -i compressed_file.bin -o

decompressed_matrix.mtx decompressed_features.tsv

decompressed_barcodes.tsv

Decompression (gene id – update json file as needed):
./linux_executable -d -i compressed_file.bin -o

decompressed_matrix.mtx decompressed_features.tsv

decompressed_barcodes.tsv -j

scRNA_expression_decompression_gene.json

Decompression (gene id – don’t decompress barcodes):
./linux_executable -d -i compressed_file.bin -o

decompressed_matrix.mtx decompressed_features.tsv

decompressed_barcodes.tsv -j

scRNA_expression_decompression_gene_no_barcodes.json

Note that the decompressed matrix.mtx file is only guaranteed to be same as original up to
reordering since the original mtx file might not be sorted according to a specific criterion (by
row/column).

4.4 Conclusions

We observe that the proposed file format offers improved compression and fast random access
across a variety of file types, while offering a high degree of customizability and ability to
incorporate additional specialized compressors.

36

References

1. “The Variant Call Format Specification”, http://samtools.github.io/hts-specs/VCFv4.3.pdf

2. Kent, W. James, et al. "BigWig and BigBed: enabling browsing of large distributed
datasets." Bioinformatics 26.17 (2010): 2204-2207.

3. Abdennur, Nezar, and Leonid Mirny. "Cooler: scalable storage for Hi-C data and other
genomically-labeled arrays." BioRxiv (2019): 557660.

4. Zheng, Xiuwen, et al. "SeqArray—a storage-efficient high-performance data format for
WGS variant calls." Bioinformatics 33.15 (2017): 2251-2257.

5. Alberti, Claudio, et al. "An introduction to MPEG-G, the new ISO standard for genomic
information representation." bioRxiv(2018): 426353.

6. Danek, Agnieszka, and Sebastian Deorowicz. "GTC: how to maintain huge genotype
collections in a compressed form." Bioinformatics 34.11 (2018): 1834-1840.

7. “CSI index”, http://samtools.github.io/hts-specs/CSIv2.pdf

http://samtools.github.io/hts-specs/VCFv4.3.pdf
http://samtools.github.io/hts-specs/CSIv2.pdf

