

1

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/M53381

April 2020, Alpbach, AT

Source ISO/IEC JTC1/SC29/WG11

Status Input Document

Title Philips’ Response to CE1 (Phase 1) of MPEG-G Part 6

Authors Patrick Y.H. Cheung (Royal Philips), Shubham Chandak (Stanford University),

René van der Vleuten (Royal Philips)

Introduction

While the existing Parts 1-5 of the ISO/IEC 23092 (MPEG-G) standard deal with the representation

of genomic information derived from the primary analysis of high-throughput sequencing (HTS)

data – sequencing reads and qualities, and their alignment to a reference genome – that is only the

first step in a long series. In particular, the results of primary analysis are usually processed further

in order to obtain higher-level information. Such a process of aggregating information deduced

from single reads and their alignments to the genome into more complex results is generally known

as secondary analysis. In most HTS-based biological studies, the output of secondary analysis is

usually represented as different types of annotations associated to one or more genomic intervals on

the reference sequences.

Biological studies typically produce genomic annotation data such as mapping statistics,

quantitative browser tracks, variants, genome functional annotations, gene expression data and Hi-

C contact matrices. These diverse types of downstream genomic data are currently represented in

different formats such as VCF, BED, WIG, etc., with loosely defined semantics, leading to issues

with interoperability, the need for frequent conversions between formats, difficulty in the

visualization of multi-modal data and complicated information exchange. Figure 1 depicts a typical

pipeline for the primary and secondary analyses of HTS data, the file formats involved and the

scopes of different parts of the ISO/IEC 23092 standard.

Furthermore, the lack of a single format has stifled the work on compression algorithms and has led

to the widespread use of general compression algorithms with suboptimum performance. These

algorithms do not exploit the fact the annotation data typically comprises of multiple fields

(attributes) with different statistical characteristics and instead compress them together. Therefore,

while these algorithms support efficient random access with respect to genomic position, they do

not allow extraction of specific fields without decompressing all the whole file.

In response to the aforementioned challenges, this document details a unified data format for the

efficient representation and compression of diverse genomic annotation data for file storage or data

transport. The benefits are manifold: reducing the cost of data storage, improving the speed of

random data access and processing, providing support for data security and privacy in selective

genomic regions, and creating linkages across different types of genomic annotation and

sequencing data. The ultimate goal is to enable the secured and seamless sharing, processing and

analysis of multi-modal genomic data in order to reduce the burden of data manipulation and

management, so scientists can focus on biological interpretation and discovery.

2

Figure 1 – Typical pipeline for the primary and secondary analyses of HTS data

1 Scope

This document specifies data formats for both transport and storage of genomic annotation data,

including but not limited to: genomic variants (VCF), gene expressions, genomic functional

annotation (BED, GTF, GFF, GFF3 and GenBank), quantitative browser tracks (Wig, BigWig and

BedGraph) and chromosome conformation capture (HiC file), and describes the conversion process

from transport to file formats.

2 Normative References

The following documents are referred to in the text in such a way that some or all of their content

constitutes requirements of this document. For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including any amendments)

applies.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

ISO/IEC/FDIS 23092-1, Information technology — Genomic information representation — Part 1:

Transport and storage of genomic information

ISO/IEC/FDIS 23092-2, Information technology — Genomic information representation — Part 2:

Coding of genomic information

ISO/IEC/FDIS 23092-3, Information technology — Genomic information representation — Part 3:

Metadata and application programming interfaces (APIs)

ISO/IEC/FDIS 23092-4, Information technology — Genomic information representation — Part 4:

Reference Software

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

IETF RFC 7320, URI Design and Ownership

3

3 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following

addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org

3.1 attribute

annotation data field that consists of one or multiple chunks (3.4) on which the same compressor

(3.7) is applied. An attribute is defined in Table Data Attribute Parameter Set (3.18) and identified

by attribute ID unique within Table Data (3.16).

3.2 attribute contiguity

setting for grouping payloads into Table Data Blocks (3.19) by attribute (3.1) and ordering them by

chunk (3.4) according to the choice of chunk order (3.6) if Table Data (3.16) is two dimensional

3.3 box

object-oriented building unit defined by a unique type identifier and length

3.4 chunk

rectangular region corresponding to specific ranges of rows and/or columns defined in Table Data

Chunk Structure (3.21)

3.5 chunk contiguity

setting for grouping payloads into Table Data Blocks (3.19) by chunk (3.4) and ordering them by

attribute ID (3.1)

3.6 chunk order

method of ordering chunks in two dimensional Table Data (3.16), can be either row-major, with

elements arranged from left to right per row and then moving from one row to the next from top to

bottom; or column-major, with elements arranged from top to bottom per column and then moving

from one column to the next from left to right.

https://www.iso.org/obp
http://www.electropedia.org/

4

3.7 Compressor

data structure within Dataset Parameter Set (3.12) that contains configuration of transform and

compression algorithms to be associated with one or more attributes (3.1) through its unique

Compressor ID within the annotation dataset (3.10)

3.8 container box

box (3.3) whose sole purpose is to contain and group a set of related boxes

3.9 data stream

set of packets (3.14) transporting the same data type

3.10 Dataset

container box (3.8) identified by Dataset ID within Dataset Group that contains one or multiple

Tables (3.15) for the representation of genomic annotation data if Dataset Type is set to 3. The

annotation data is further classified into subtypes that include “VCF”, “GeneExpression”, “Wig”,

“BigWig”, “BedGraph”, “BED”, “GTF”, “GFF”, “GFF3”, “GenBank”, “HiC” and other user-

defined values.

3.11 Dataset Mapping Table

mandatory box (3.3) under Dataset (3.10) that lists all data streams transporting data related to the

dataset identified by Dataset ID

3.12 Dataset Parameter Set

container box (3.8) describing any of the parameter sets associated to the dataset. For annotation

datasets, it contains the definition of compressors (3.7) needed for the compression/decompression

of attributes in tables.

3.13 file format

set of data structures for the storage of coded information

3.14 packet

transmission unit transporting segments of any of the data structures defined in this document

5

3.15 Table

container box (3.8) in annotation dataset (3.10) identified by Table ID and comprising tabulated

annotation data that includes a main Table Data (3.16) and optionally one or multiple auxiliary

Table Data

3.16 Table Data

container box (3.8) in Table (3.15) identified by Table Data ID and grouping attributes into classes:

0 – main; 1/2 – auxiliary row/column data attributes; 3/4 – auxiliary row/column linkage attributes;

4-7 – user-defined auxiliary attributes

3.17 Table Data Attribute Information

container box (3.8) in Table Data (3.16) that comprises a collection of attribute definitions

encapsulated in Table Data Attribute Parameter Sets (3.18)

3.18 Table Data Attribute Parameter Set

box (3.3) in Table Data Attribute Information (3.17) that contains the basic information of an

attribute (3.1) and its associated compressor (3.7)

3.19 Table Data Block

box (3.3) in Table Data (3.16) that groups and organizes the compressed payloads. There are two

types of Table Data Block: Type 0 for chunk contiguity (3.5), where a block contains payloads of

the same chunk ordered by their attribute IDs; and Type 1 for attribute contiguity (3.2), where a

block contains payloads of the same attribute ordered by their chunk indices.

3.20 Table Data Byte Offset

box (3.3) in Table Data Master Index (3.23) that comprises the byte-offset pointers to the Table

Data Blocks (3.19) and their individual payloads

3.21 Table Data Chunk Structure

box (3.3) in Table Data Master Index (3.23) that contains information on how Table Data (3.16)

should be divided into rectangular chunks (3.4). The chunk size, in term of number of

rows/columns, can be uniform, in which case only the size per dimension needs to be specified, or

variable, in which case the ranges of row and/or column indices need to be specified for individual

chunks.

3.22 Table Data Header

mandatory data structure in the transport format (3.26) for the four boxes (3.3) – Table Data

Attribute Information (3.17), Table Data Master Index (3.23), Table Data Supplementary Indices

6

(3.24) and Table Data Block (3.19) – in Table Data (3.16). It contains the IDs of the upper-level

containers that are required for the assembly of the Table Data structures after transport, but is

excluded from the file format (3.13).

3.23 Table Data Master Index

container box (3.8) in Table Data (3.16) that carries indexing information consisting of one or

multiple (if attribute-dependent) Table Data Chunk Structure (3.21) boxes, and a Table Data Byte

Offset (3.20) box. It enables the mapping between row and/or column indices of Table Data and

specific chunks (3.4) of an attribute (3.1).

3.24 Table Data Supplementary Indices

optional container box (3.8) in Table Data (3.16) that carries additional attribute-specific indexing

data encapsulated in Table Data Supplementary Index Data (3.25) for enabling query search based

on criteria such as genomic region, gene symbol or any other attributes

3.25 Table Data Supplementary Index Data

box (3.3) in Table Data Supplementary Indices (3.24) that contains information and data of a

supplementary index

3.26 transport format

set of data structures for the transport of coded information

3.27 variable

parameter either inferred from syntax fields or locally defined in a process description

4 Mathematical Operators

NOTE The mathematical operators used in this document are similar to those used in the C

programming language. However, integer division with truncation and rounding are specifically

defined. The bitwise operators are defined assuming two's-complement representation of integers.

Numbering and counting loops generally begin from 0.

4.1 Arithmetic operators

+ addition

− subtraction (as a binary operator) or negation (as a unary operator)

++ increment

* multiplication

7

/ integer division with truncation of the result toward 0 (for example, 7/4 and −7/−4 are

truncated to 1 and −7/4 and 7/−4 are truncated to −1)

4.2 Logical operators

|| logical OR

&& logical AND

! logical NOT

4.3 Relational operators

> greater than

≥ greater than or equal to

< less than

≤ less than or equal to

== equal to

!= not equal to

4.4 Bitwise operators

& AND

| OR

>> shift right with sign extension

<< shift left with 0 fill

4.5 Assignment

= assignment operator

4.6 Unary operators

sizeof(N) size in bytes of N, where N is either a data structure or a data type

8

5 Overview of Coded Genomic Annotation Data

5.1 Basic components of an annotation table – attributes and chunks

An annotation table is divided into attributes, each of which contains data with similar statistical

characteristics and is therefore independently compressed to improve the compression ratio.

Usually, an attribute represents a column, but if a column contains multiple data fields, such as the

INFO column of a VCF file, then an attribute can represent an individual data field within a

column. Figure 2 shows two table examples, with xij, yij and zij denoting three data fields with

different statistical characteristics, where (i, j) are the row and column indices. The table in (a) can

be divided into three one-dimensional (1-d) attributes corresponding to data fields x, y and z.

Whereas the table in (b) can be divided into three two-dimensional (2-d) attributes corresponding to

the same data fields.

(a) (b)

Figure 2 – Examples of (a) one-dimensional and (b) two-dimensional table attributes

To support selective data access, the data of each attribute can be further divided into rectangular

regions known as chunks, each of which with independent compressor configurations for optimum

performance. With a master index that provides the mapping between table indices and chunks,

data from selected regions of the table can be accessed by looking up and decompressing only the

chunks that overlap with the region without the need to decompress the whole file.

It is flexible for user to define the layout of the chunks using a chunk structure. The size of each

chunk can be uniform or variable across the table. Usually the same chunk structure is applied to all

attributes for ease of indexing. However, in cases where the attributes have widely different

characteristics, attribute-dependent chunk structures can be applied. In general, a larger chunk size

improves the compression ratio but reduces the speed of selective access. Figure 3 and Figure 4

show the example chunk structures of respectively uniform- and variable-size chunks.

Figure 3 – Example chunk structure of uniform-size chunks

9

Figure 4 – Example chunk structure of variable-size chunks

5.2 Key containers for annotation data

5.2.1 Dataset

Figure 5 – Top-level container hierarchy for annotation datasets (Type 3)

In this format, the top-level container boxes: File, Dataset Group, and Dataset from Part 1 are

retained, with extensions to: (1) Dataset to include a new Dataset Type of value 3 for the

representation of genomic annotation data, and (2) Dataset Parameter Set to store compressor

configurations for use on selected attributes. A dataset can contain multiple (< 128) tables, which

may correspond to data at different resolutions, sampling time points, etc. Figure 5 shows the top-

level container hierarchy for annotation datasets.

10

5.2.2 Table

Figure 6 – Overview of Table container structure

Table, identified by Table ID, is the main container box that is specific to annotation data and

consists of the following components as shown in Figure 6:

― Table Header, a mandatory box describing the content of the Table

― Table Metadata, an optional box containing metadata associated with the Table, which includes

some basic information and metadata that supports functionalities such as data traceability,

reproducibility and linkages with other datasets or tables

― Table Protection, an optional box containing protection information associated with the Table

to support confidentiality (encryption), integrity verification (digital signature) and access

control policy enforcement

― Main Table Data (Class 0), a mandatory box containing the core attributes of the Table

― Auxiliary Table Data (Classes 1-7), one or multiple (< 8) optional boxes containing the

auxiliary attributes that supplement the Main Table Data. The classes of auxiliary Table Data

include: 1/2 for auxiliary row/column data attributes, 3/4 for auxiliary row/column linkage

attributes, and 4-7 for user-defined auxiliary attributes

11

5.2.3 Table Data

Figure 7 – Overview of Table Data container structure

Table Data, identified by Table Data ID, is a container box in Table that groups attributes into

classes by their roles, and consists of the following components as shown in Figure 7:

― Table Data Attribute Information, a mandatory box containing a collection of attribute

definitions

― Table Data Master Index, a mandatory box containing indexing information that enables the

mapping between row and/or column indices of Table Data and specific chunks of an attribute

― Table Data Supplementary Indices, an optional box containing additional attribute-specific

indexing data that enables query search based on criteria such as genomic region, gene symbol

or any other attributes

― Table Data Blocks, mandatory boxes that groups and organizes the compressed payloads. There

are two types of Table Data Block: Type 0 for chunk contiguity, where a block contains

payloads of the same chunk ordered by their attribute IDs; and Type 1 for attribute contiguity,

where a block contains payloads of the same attribute ordered by their chunk indices.

Compound query that consists of a logical combination of attribute conditions can be realized by

(1) looking up the row and/or column indices satisfying each attribute condition independently, (2)

identifying the subset of indices satisfying the logics in the compound query, (3) mapping the

subset of indices to specific chunks of an attribute, and (4) looking up the locations of the payloads

of the matching chunks.

12

5.2.4 Table Data Block

Figure 8 – Overview of Table Data Block container structure

Table Data Block is a container box in Table Data that groups and organizes the compressed

payloads. For chunk-contiguous (Type 0) blocks, index (1-d) or indices (2-d) of the chunk to which

the payloads belong are included. Whereas for attribute-contiguous (Type 1) blocks, the ID of the

attribute to which the payloads belong is included. They are then followed by a concatenation of

the size and data of the compressed payloads. The order of the payloads should be the same as the

order of the attributes in Table Data Attribute Information for chunk-contiguous blocks, or the

order of the chunks for attribute-contiguous blocks. For 2-d Table Data, either row-major or

column-major chunk ordering can be applied.

6 Data Format

6.1 Format structure

6.1.1 General

Table 1 presents the overall data structures and hierarchical encapsulation levels for the

representation of genomic annotation data built on and compatible with ISO/IEC 23092-1 (Part 1).

Data structures that remain the same are in gray text, with the reference to the corresponding clause

in Part 1 included. Boxes that may occur at the top-level are shown in the left-most column;

indentation is used to show possible containment. Not all boxes need to be used in all files; the

mandatory boxes are marked with an asterisk (*) in the Mandatory column: such column refers to

the relevant scope (File and/or Transport). Optional boxes are represented with dashed borders in

Figure 9 and Figure 10. Mandatory boxes are represented with solid borders. When no entry is

present in the Scope column, scope is both File and Transport. If the box key is represented in italic

format in Table 1, the relevant box is represented with neither Key nor Length, but only Value in

the gen_info format, as specified in subclause 6.3.1, for all boxes but offset, as specified in

subclause 6.6.4.1 of Part 1 for the offset box.

Table 1 – Format structure and encapsulation levels

Box key (with hierarchical level)
Sub-clause Scope Mandatory

0 1 2 3 4 5

flhd Part 1: 6.5.1 File *

13

dgcn Part 1: 6.5.2 File *

 dghd Part 1: 6.5.2.2 *

 dgmd Part 1: 6.5.2.6

 dgpr Part 1: 6.5.2.7

 dmtl Part 1: 6.7.3 Transport *

 dtcn 6.4.1 File *

 dthd 6.4.1.2 *

 pars 6.4.1.3 *

 dtmd Part 1: 6.5.3.3

 dtpr Part 1: 6.5.3.4

 dmtb 6.6.3 Transport *

 tbcn 6.4.2 File *

 tbhd 6.4.2.2 *

 tbmd 6.4.2.3

 tbpr 6.4.2.4

 tdcn 6.4.3 File *

 tdai 6.4.4 *

 table_data_header 6.6.4 Transport *

 tdap 6.4.4.2 *

 tdmi 6.4.5 *

 table_data_header 6.6.4 Transport *

 tdcs 6.4.5.2 *

 tdbo 6.5.2 File *

 tdsi 6.4.6

 table_data_header 6.6.4 Transport

 tdsd 6.4.6.2

 tdbl 6.4.7 *

 table_data_header 6.6.4 Transport *

 offset offs Part 1: 6.6.4 File

packet Part 1: 6.7.5 Transport *

packet_

header
 Part 1: 6.7.5.2 Transport *

14

Figure 9 – Data structures hierarchy for storage

Figure 10 – Data structures hierarchy for transport

Individual data fields of the data types defined in subclauses 6.2.3 and 6.3 – f(n), u(n), st(v), c(n),

gen_info and gen_text – are considered an integral part of their containers with the same scope and

mandatory statuses, and are therefore not explicitly depicted in Figure 9 and Figure 10.

In transport format, any box represented in Figure 10 shall be encapsulated in one or more packets,

as specified in subclause 6.7.5 of Part 1. Dataset Group, Dataset, Table and Table Data are

15

represented in Figure 10 for clarity, but the corresponding container boxes (dgcn, dtcn, tbcn and

tdcn) do not exist in transport format.

6.1.2 Box order

In order to improve interoperability, the following rules shall be followed for the order of boxes:

In file format

1) The container boxes (Dataset Group, Dataset, Table and Table Data) shall be ordered according

to the hierarchy specified in Table 1.

2) The box order inside the containers dgcn, dtcn, tbcn, and tdcn are specified in Table 9 of Part 1,

Table 4, Table 8 and Table 12, respectively.

3) The file header box ‘flhd’ shall occur before any variable-length box.

4) When present, the offset box ‘offs’, as specified in subclause 6.6.4 of Part 1, enables an indirect

addressing of boxes, which, while logically respecting the ordering specified in this subclause,

may be physically located in a different position in the file.

5) The contiguity of child boxes inside the containers dgcn, dtcn, tbcn, and tdcn shall not be

broken by any box external to the container box, apart from the offset box, as specified in

subclause 6.6.4 of Part 1.

In transport format

1) The box order is not specified, but the dataset_mapping_table_list and dataset_mapping_table

boxes shall be decoded first, and then all other boxes according to the hierarchy specified in

Table 1.

2) It is strongly recommended to transmit the dataset_mapping_table_list, dataset_mapping_table

and file_header boxes first.

3) It is recommended to transmit the boxes in hierarchical order, as specified in Table 1.

4) It is recommended, within Table Data, to transmit Table Data Attribute Information and Table

Data Master Index first, before transmitting Table Data Blocks and the optional Table Data

Supplementary Indices.

6.2 Syntax and semantics

6.2.1 Method of specifying syntax in tabular form

Table 2 lists the constructs that are used to express the conditions when data elements are present.

NOTE This syntax uses the convention that a variable or expression evaluating to a non-zero

value is equivalent to a condition that is true.

16

Table 2 – Constructs used to express the conditions when data elements are present

Construct Description

while (condition) {

 data_element

 . . .

}

If the condition is true, then the group of data elements occurs next in the data stream.

This repeats until the condition is not true.

do {

 data_element

 . . . }

while (condition)

The data element always occurs at least once. The data element is repeated until the

condition is not true.

if (condition) {

 data_element

 . . .

}

If the condition is true, then the first group of data elements occurs next in the data

stream.

else {

 data_element

 . . .

}

If the condition is not true, then the second group of data elements occurs next in the

data stream.

for (i=0; i<n; i++) {

 data_element

 . . .

}

The group of data elements occurs n times. Conditional constructs within the group of

data elements may depend on the value of the loop control variable i, which is equal to

zero for the first occurrence, incremented to 1 for the second occurrence, and so forth.

As noted, the group of data elements may contain nested conditional constructs. For compactness,

the {} are omitted when only one data element follows. Collections of data elements are

represented as listed in Table 3.

Table 3 – Syntax used to represent collections of data elements

data_element[] data_element[] is an array of data. The number of data elements is indicated by the

semantics.

data_element[n] data_element[n] is the (n+1) th element of an array of data.

data_element[m][n] data_element[m][n] is the (m+1) th, (n+1) th element of a two-dimensional array of

data.

data_element[l][m][n] data_element[l][m][n] is the (l+1) th, (m+1) th, (n+1) th element of a three-

dimensional array of data.

6.2.2 Bit ordering

The bit order of syntax fields in the syntax tables is specified to start with the most significant bit

(MSB) and proceed to the least significant bit (LSB).

6.2.3 Specification of syntax functions

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit

positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not

advance the bitstream pointer.

The following data types specify the parsing process of each syntax element:

― f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The

parsing process for this data type is specified by the return value of the function read_bits(n).

17

― u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies

in a manner dependent on the value of other syntax elements. The parsing process for this data

type is specified by the return value of the function read_bits(n) interpreted as a binary

representation of an unsigned integer with most significant bit written first.

― st(v): null-terminated string encoded as universal coded character set (UCS) transmission

format-8 (UTF-8) characters as specified in ISO/IEC 10646. The parsing process is specified as

follows: st(v) reads and returns a series of bytes from the bitstream, beginning at the current

position and continuing up to but not including the next byte that is equal to 0x00, and advances

the bitstream pointer by (stringLength + 1) * 8 bit positions, where stringLength is equal to the

number of bytes returned. The maximum value of stringLength is 16384.

― c(n): sequence of n ASCII characters as specified in ISO/IEC 10646.

6.3 Syntax for representation

6.3.1 General Information (gen_info) data structure

KLV (Key Length Value) format is used for all the data structures listed in Table 1, except

table_data_header, offset, packet and packet_header.

The KLV syntax is defined as follows:

struct gen_info

{

c(4) Key;

u(64) Length;

u(8) Value[];

}

The Length field specifies the number of bytes composing the entire gen_info structure, including

all three fields Key, Length and Value.

The table_data_header, offset, packet and packet_header data structures have no Key and no

Length, but only Value.

All syntax tables specified in subclauses 6.4, 6.5 and 6.6, for boxes of type gen_info, represent the

internal syntax of the Value[] array field only. In the scope of this document the Value[] array is

referred as just Value.

6.3.2 General Text (gen_text) data structure

The data type gen_text is for the representation of general text in the syntax tables specified in this

document, with the option of having the text compressed or not. Its syntax is defined as follows:

struct gen_text

{

u(23) Length;

u(1) Compression_Flag;

u(8) Data[];

}

18

The Length field specifies the number of bytes composing the entire gen_text structure. If

Compression_Flag == 1, Data[] consists of data bytes compressed with the default compressor

(Compressor ID == 1) defined in dataset_parameter_set. Otherwise, Data[] consists of

uncompressed characters.

6.4 Data structures common to file format and transport format

6.4.1 Dataset

6.4.1.1 General

The Dataset structure defined in subclause 6.5.3 of Part 1 is extended as described in this section to

support a new dataset type, with dataset_type equal to 3, for the representation of genomic

annotations. The new dataset type is a collection of data tables of the same nature, where different

tables can store the data at multiple resolutions, among other possible applications. The extended

Dataset structure allows various genomic annotation data and high-throughput sequencing (HTS)

data to be stored in a unified file format, and ensures backward compatibility with ISO/IEC 23092

Series (Second Edition) and interoperability with existing MPEG-G components.

The relevant container box (dtcn in Table 1) is mandatory in file format, forbidden in transport

format.

Child boxes may be present or not, according to the column “Mandatory” in Table 1. Child boxes

marked with suffix “[]” after their name in the Syntax column of Table 4 may be present in

multiple instances.

Table 4 – Dataset syntax

Syntax Key Type Remarks

dataset { dtcn

 dataset_header dthd gen_info As specified in 6.4.1.2

 DT_metadata dtmd gen_info As specified in Part 1: 6.5.3.3

 DT_protection dtpr gen_info As specified in Part 1: 6.5.3.4

 dataset_parameter_set[] pars gen_info As specified in 6.4.1.3

 if (dataset_type < 3) {

 /* Same syntax as in Part 1: Table 19 */ As specified in Part 1: 6.5.3.1

 }

 else {

 For (i=0; i<n_tables; i++)

 table[i] tbcn gen_info As specified in 6.4.2

 }

}

6.4.1.2 Dataset Header

6.4.1.2.1 General

This is a mandatory box describing the content of a Dataset. This data structure is extended based

on Part 1: 6.5.3.2 to handle the representation of genomic annotations, with a new dataset_type

value of 3.

19

6.4.1.2.2 Syntax

Table 5 – Dataset Header syntax

Syntax Key Type Remarks

dataset_header { dthd

 dataset_group_ID u(8)

 dataset_ID u(16)

 version c(4)

 if (version[0..1] == ‘19’) {

 /* Same syntax as in Part 1: Table 20 */ As specified in Part 1: 6.5.3.2

 }

 else {

 dataset_type u(4)

 if (dataset_type < 3) {

 /* Same syntax as in Part 1: Table 20, except

 with the data_type row removed */
 As specified in Part 1: 6.5.3.1

 }

 else if (dataset_type == 3) {

 reserved u(4)

 dataset_subtype st(v)

 dataset_name st(v)

 dataset_version st(v)

 byte_offset_size_flag u(1)

 n_tables u(7)

 for (i=0; i<n_tables; i++) { The order of table_ID and

 table_ID[i] u(8) table_info should be the same

 table_info[i] gen_text as table in Dataset as specified

 } in 6.4.1.1.

 }

 }

}

6.4.1.2.3 Semantics

dataset_group_ID is the identifier of dataset group containing the dataset including this Dataset

Header.

dataset_ID is the identifier of the dataset. Its value shall be one of the dataset_IDs listed in the

Dataset Group Header.

version is the combination of version number, amendment number and corrigendum number of

ISO/IEC 23092-2 to which the Value field of the dataset, as specified in subclause 0, complies, and

is specified as follows:

― first two bytes: version number, as the last two digits of the year of release of the major brand

― third byte: amendment number, as integer counter from 0 to 9, 0 if no amendment yet

― fourth byte: corrigendum number, as integer counter from 0 to 9, 0 if no corrigendum yet

dataset_type specifies the type of data encoded in the dataset. The possible values are: 0 = non-

aligned content; 1 = aligned content; 2 = reference; 3 = annotation.

20

dataset_subtype specifies the type of genomic annotation data encoded in the dataset. The possible

values include: “VCF”, “GeneExpression”, “Wig”, “BigWig”, “BedGraph”, “BED”, “GTF”,

“GFF”, “GFF3”, “GenBank”, “HiC” and other user-defined values. Each dataset_subtype is

associated with a set of attribute parameter definitions specific to the corresponding genomic

annotation file type.

dataset_name is the name of the dataset, which could be the name of the original annotation file.

dataset_version is the version of the dataset for keeping track of updates to the dataset.

byte_offset_size_flag: if equal to 0, the variable byteOffsetSize used in Table Data Byte Offset, as

specified in subclause 6.5.2, and representing the number of bits used to encode the fields named

data_block_byte_offset and payload_byte_offset, is equal to 32; if set to 1, the variable

byteOffsetSize is equal to 64.

n_tables specifies the number of tables in the dataset. Multiple tables can be used to store the data

at different resolutions, among other possible applications.

table_ID is the identifier of a table unique within the dataset.

table_info stores the general information, e.g. data resolution, on a table.

6.4.1.3 Dataset Parameter Set

6.4.1.3.1 General

Dataset Parameter Set is a mandatory box describing any of the parameter sets associated to the

dataset as specified in subclause 6.5.3.5 of Part 1. While its overall syntax remains the same, its

embedded encoding_parameters() structure is extended, as described in Tables Table 5 and Table 6,

to support the definition of compressors needed for the decompression of attributes in the tables of

annotation datasets.

6.4.1.3.2 Syntax

Table 6 – Encoding parameters syntax

Syntax Type Remarks

encoding_parameters() {

 dataset_type u(4)

 if (dataset_type < 3) {

 /* Same syntax as in Part 2: Table 7 */

 }

 else {

 reserved u(4)

 n_compressors u(8)

 for (i=0; i < n_compressors; i++)

 compressor[i] compressor

 }

}

21

Table 7 – Compressor syntax

Syntax Type Remarks

compressor {

 compressor_ID st(v)

 reserved u(7)

 transform u(1)

 if (transform) {

 transform_algorithm_ID st(v)

 n_dependencies u(8)

 }

 n_compression_algorithms

 for (i=0; i<n_compression_algorithms; i++) {

 compression_algorithm_ID[i] st(v)

 compression_algorithm_pars[i] st(v)

 }

}

6.4.1.3.3 Semantics

dataset_type specifies the type of data in the dataset for which the encoding parameters are

defined. The possible values are: 0 = non-aligned content; 1 = aligned content; 2 = reference; 3 =

annotation.

n_compressors specifies the number of compressors, i.e. configurations of transform and

compression algorithms, defined for the annotation dataset.

compressor_ID is the unique identifier of the compressor within the dataset, with the values 0 and

1 reserved respectively for no compression and default compressor. It is used in Table Data

Attribute Parameter Set as specified in subclause 6.4.4.2 to associate the corresponding

configuration of transform and compression algorithms with an attribute.

transform is a flag, and if set to 1, indicates that the compressor involves data transform before

compression. Otherwise, no data transform is involved.

transform_algorithm_ID is the identifier of the transform algorithm being applied, optionally

followed by a comma and then a URI that points to the codes of the transform algorithm. The URI

shall be compliant with IETF RFC 3986 and IETF RFC 7320. If the ID is known and the codes are

already installed, an MPEG-G compliant software can directly perform the transform/inverse-

transform operation. If the ID is unknown and a URI is available, then the software should prompt

the user to download and install the codes, and register the ID and a pointer to the executables for

future use. If the ID is unknown and there is no URI, then the software should inform the user that

the algorithm is not available.

n_dependencies specifies the number of dependency attributes for the transform.

n_compression_algorithms specifies the number of compression algorithms applied on an

attribute in sequential order.

compression_algorithm_ID[i] is the identifier of the i-th compression algorithm being applied,

optionally followed by a comma and then a URI that points to the codes of the compression

algorithm. The URI shall be compliant with IETF RFC 3986 and IETF RFC 7320. If the ID is

known and the codes are already installed, an MPEG-G compliant software can directly perform

22

the transform/inverse-transform operation. If the ID is unknown and a URI is available, then the

software should prompt the user to download and install the codes, and register the ID and a pointer

to the executables for future use. If the ID is unknown and there is no URI, then the software

should inform the user that the algorithm is not available.

compression_algorithm_pars[i] is a string of parameters in a predefined format required by the i-

th compression algorithm.

The following is an example of compressor configurations for the compression of a sparse matrix,

such as genotype values or gene expressions:

n_compression_algorithms = 3

compression_algorithm_ID = {“sparse”, “gzip”, “7-zip”}

compression_algorithm_pars = {“out_streams: coordinates, values”,

 “in_streams: coordinates”,

 “in_streams: values”}

The compression process is as follows:

(1) Apply the first “sparse” algorithm on the sparse matrix to generate two output streams:

“coordinates” and “values” that correspond to the coordinates and values of the cells with non-

zero entries,

(2) Apply the second “gzip” algorithm on the “coordinates” stream to generate a stream that

consists of the size of type u(32) and payload of the compressed coordinates,

(3) Apply the third “7-zip” algorithm on the “values” stream to generate a stream that consists of

the size of type u(32) and payload of the compressed values, and

(4) Output the size and payload of the compressed coordinates, followed by the size and payload of

the compressed values.

The process can be reversed for decompression:

(1) Extract the compressed coordinates and values payloads with their known sizes,

(2) Decompress the payloads respectively using the “gzip” and “7-zip” algorithms, and

(3) Reconstruct the original sparse matrix from the decompressed coordinates and values.

6.4.2 Table

6.4.2.1 General

Table is the main container box of tabulated annotation data and always includes the main Table

Data, which contains core attribute data, which can be 1-d (two_dimensional_main == 0) or 2-d

(two_dimensional_main == 1). One or multiple auxiliary Table Data can be included to supplement

the main Table Data with attributes associated with the rows/columns for additional data or linkage

information, or for other purposes as defined by users.

23

Table 8 – Table syntax

Syntax Key Type Remarks

table { tbcn

 table_header tbhd gen_info As specified in 6.4.2.2

 table_metadata tbmd gen_info As specified in 6.4.2.3

 table_protection tbpr gen_info As specified in 6.4.2.4

 table_data_main tdcn gen_info As specified in 6.4.3

 for (i=0; i<n_aux_data; i++)

 aux_table_data[i] tdcn gen_info As specified in 6.4.3

}

6.4.2.2 Table Header

6.4.2.2.1 General

This is a mandatory box describing the content of a Table.

6.4.2.2.2 Syntax

Table 9 – Table Header syntax

Syntax Key Type Remarks

table_header { tbhd

 dataset_group_ID u(8)

 dataset_ID u(16)

 table_ID u(8)

 table_info gen_text

 n_summary_statistics u(8)

 for (i=0; i<n_summary_statistics; i++) {

 summary_statistic_key[i] st(v)

 summary_statistic_value[i] st(v)

 }

 reserved u(5)

 two_dimensional_main u(1)

 symmetry_mode u(3)

 symmetry_minor_diagonal u(1)

 table_index_size u(3)

 n_aux_data u(3)

 for (i=0; i<n_aux_data; i++) {

 aux_data_name[i] st(v)

 aux_data_metadata[i] gen_text

 }

}

6.4.2.2.3 Semantics

dataset_group_ID is the identifier of dataset group containing the dataset including this Dataset

Header.

dataset_ID is the identifier of the dataset. Its value shall be one of the dataset_IDs listed in the

Dataset Group Header.

24

table_ID is the unique identifier of the table within the dataset. Its value shall be one of the

table_IDs listed in the Dataset Header.

table_info is the textual information about the table.

n_summary_statistics specifies the number of summary statistics for the table.

(summary_statistic_key[i], summary_statistic_value[i]) is the key-value pair of the ith summary

statistic of the table.

two_dimensional_main is a flag, and if set to 1, indicates that all attributes in the main Table Data

are 2-d. Otherwise, all attributes in the main Table Data are 1-d.

symmetry_mode specifies the symmetry mode of the main Table Data and is only effective when

two_dimensional_main == 1. The possible values are: 0 = unsymmetrical; 1 = symmetrical; 2 =

skew-symmetric; 3 = Hermitian; 4-7 = reserved or user-defined. For symmetry modes 1-3, attribute

values in the reflected half to the right of the principal/minor diagonal (inclusive of the diagonal if

skew-symmetric) should be processed as missing values.

symmetry_minor_diagonal is a flag, and if set to 1, indicates that the symmetry is along the minor

diagonal of the main Table Data. Otherwise, symmetry is along the principal diagonal by default.

table_index_size specifies the number of bytes required for representing the row/column index of

the table. It determines the size of the fields n_chunks, chunk_size, start_index and end_index in

Table Data Chunk Structure, as specified in subclause 6.4.5.2.

n_aux_data specifies the number of auxiliary Table Data structures in the Table.

aux_data_name[i] is the name of the ith auxiliary Table Data.

aux_data_metadata[i] is the metadata associated with the ith auxiliary Table Data.

6.4.2.3 Table Metadata

6.4.2.3.1 General

Table Metadata is an optional box containing metadata associated with a Table. In addition to some

basic information about the table, it can also contain metadata that supports functionalities such as

data traceability, reproducibility and linkages with other datasets or tables.

6.4.2.3.2 Syntax

Table 10 – Table Metadata syntax

Syntax Key Type Remarks

table_metadata { tbmd

 dataset_group_ID u(8)

 dataset_ID u(16)

 table_ID u(8)

 TB_metadata_value()

}

25

6.4.2.3.3 Semantics

TB_metadata_value() contains compressed table metadata. The decoding process is specified in

Clause 9 of Part 3. The output of the decoding process is an XML document with an element Table

as root. The XML schema for table metadata will be provided in a separate document. A table

metadata element overwrites the corresponding element whose values differ from the one indicated

at the dataset level (i.e., the new value in the table is a specialization of the value at the dataset

level). Table 2 of Part 3 defines the process to obtain the dataset metadata with inherited elements.

The same approach for metadata protection and mechanism for extensions of the metadata as

specified in subclauses 6.5 and 6.6 are applicable to table metadata.

6.4.2.4 Table Protection

6.4.2.4.1 General

Table Protection is an optional box containing protection information associated with a Table to

support confidentiality (encryption), integrity verification (digital signature) and access control

policy enforcement on selected regions of the Table as required by the user.

6.4.2.4.2 Syntax

Table 11 – Table Protection syntax

Syntax Key Type Remarks

table_protection { tbpr

 dataset_group_ID u(8)

 dataset_ID u(16)

 table_ID u(8)

 TB_protection_value()

}

6.4.2.4.3 Semantics

TB_protection_value() contains compressed protection metadata. The decoding process to retrieve

the XML document from the coded representation is specified in Clause 9 of Part 3. It consists of

three main components: encryption parameters, privacy policy and digital signatures. Details on the

XML schema for table protection metadata will be provided in a separate document.

Controlled access to and authentication of data subsets within a table are enabled through privacy

rules and signature elements in the schema. Like the protection metadata at the Dataset Group and

Dataset levels, the privacy rules specify who can execute a given action and under which

conditions, and the information is conveyed according to the eXtensible Access Control Markup

Language (XACML) Version 3.0 specification. Users may define the attributes, chunks, genomic

regions, and ranges of table indices on which a privacy rule is applied. Any number of XML

signature elements can be present in the Table Protection box and shall use a URI to specify the

attributes and chunks associated with each signature. Detached, Enveloped and Enveloping

signatures are supported. If decryption is required, signature verification shall be performed before

decryption.

26

6.4.3 Table Data

6.4.3.1 General

Table Data is a container box that allows Table attributes to be grouped and organized by their

roles as: main data, auxiliary data associated with the rows/columns of the main data, auxiliary

row/column linkages with other Tables, and any other auxiliary data as defined by users.

There are two ways to organize data payloads in Table Data:

― If either attribute_dependent_chunks or attribute_contiguity equals 1, group data payloads into

Table Blocks by attribute (block_type == 1) and order them by chunk as in the corresponding

chunk structure in Table Data Master Index.

― Otherwise, group data payloads into Table Blocks by chunk (block_type == 0) and order them

by attribute as in Table Data Attribute Information. Chunk contiguity is only allowed when the

same chunk structure is shared among all attributes and attribute_contiguity is set to 0.

6.4.3.2 Syntax

Table 12 – Table Data syntax

Syntax Key Type Remarks

table_data { tdcn

 table_data_ID u(3)

 table_data_class u(3)

 two_dimensional u(1)

 column_major_chunk_order u(1)

 for (i=0; i<(two_dimensional + 1); i++)

 dimension_size[i]
u(table_ind

ex_size*8)

 attribute_info tdai gen_info As specified in 6.4.4

 master_index tdmi gen_info As specified in 6.4.5

 supplementary_indices tdsi gen_info As specified in 6.4.6

 if (!attribute_dependent_chunks &&

 !attribute_contiguity) {
 Parameters defined in Table 16

 block_type = 0
Assigned to Table Data Blocks

indicating chunk contiguity

 if (variable_size_chunks || !two_dimensional) {

variable_size_chunks defined in

the uniform chunk structure in

Table 16

 for (i=0; i<n_chunks; i++) {
n_chunks defined in the uniform

chunk structure in Table 16

 if (sizeof(payload_chunk[i]) > 0)
Omit the block for the chunk of

indices (i, j) if payload is empty

 table_block_by_chunk[i] tdbl gen_info As specified in 6.4.7

 }

 }

 else if (column_major_chunk_order) {

 for (j=0; j<n_chunks_per_row; j++) {
The number of chunks per row/

column is either inferred from

27

 for (i=0; i<n_chunks_per_col; i++) {

dimension_size and chunk_size,

or the range of chunk indices of

the transported Table Data

Blocks.

 if (sizeof(payload_chunk[i][j]) > 0)

 table_block_by_chunk[i][j] tbdl gen_info As specified in 6.4.7

 }

 }

 }

 else {

 for (i=0; i<n_chunks_per_col; i++) {

 for (j=0; j<n_chunks_per_row; j++) {

 if (sizeof(payload_chunk[i][j]) > 0)

 table_block_by_chunk[i][j] tbdl gen_info As specified in 6.4.7

 }

 }

 }

 }

 else {

 block_type = 1
Assigned to Table Data Blocks

indicating attribute contiguity

 for (i=0; i<n_attributes; i++) {

 if (sizeof(payload_attribute[i] > 0)
Omit the block for the i-th

attribute if payload is empty

 table_block_by_attribute[i] tdbl gen_info As specified in 6.4.7

 }

 }

}

6.4.3.3 Semantics

table_data_ID is the unique identifier of the Table Data within the Table.

table_data_class specifies the class of the Table Data. The possible values are:

― 0 – main Table Data

― 1 – auxiliary Table Data for data attributes mapped to the rows of the main Table Data

― 2 – auxiliary Table Data for data attributes mapped to the columns of the main Table Data

― 3 – auxiliary Table Data for linkage attributes mapped to the rows of the main Table Data

― 4 – auxiliary Table Data for linkage attributes mapped to the columns of the main Table Data

― 5-7 – any auxiliary Table Data defined by the user

Within a Table, there can only be one main Table Data of class 0. For auxiliary Table Data of

classes 1-4, if the attributes are two-dimensional, the mapping is always between the rows of the

auxiliary Table Data and the rows (classes 1 and 3) or columns (classes 2 and 4) of the main Table

Data.

28

two_dimensional is a flag, and if set to 1, indicates that all attributes in the Table Data are 2-d.

Otherwise, all attributes in the Table Data are 1-d. For main Table Data, its value should be the

same as two_dimensional_main.

column_major_chunk_order is a flag only relevant for an attribute when two_dimensional == 1

and variable_size_chunks == 0 in the corresponding Table Data Chunk Structure. If set to 1, it

indicates that the chunks of the attribute within the Table Data Block (block_type == 1) are in

column-major order. Otherwise, the chunks are in row-major order.

dimension_size[i] specifies the total number of rows (i == 0) or columns (i == 1) in the Table Data

when two_dimensional == 1, or simply the number of elements when two_dimensional == 0. In the

case of transport when data generation is ongoing, a value of 0 can be applied. At the completion of

data generation and transport, the value(s) of dimension_size[] should be computed and reassigned.

6.4.4 Table Data Attribute Information

6.4.4.1 General

Table Data Attribute Information is a collection of attribute definitions encapsulated in

attribute_parameter_set, with the number of attributes specified in n_attributes.

Table 13 – Table Data Attribute Information syntax

Syntax Key Type Remarks

table_data_attribute_information { tdai

 table_data_header table_data_header As specified in 6.6.4

 n_attributes u(16)

 for (i=0; i<n_attributes; i++)

 attribute_parameter_set[i] tdap gen_info As specified in 6.4.4.2

}

6.4.4.2 Table Data Attribute Parameter Set

6.4.4.2.1 General

Table Data Attribute Parameter Set is a box that contains the definitions of an attribute, including

some basic information and configurations of its associated compressor.

6.4.4.2.2 Syntax

Table 14 – Table Data Attribute Parameter Set Syntax

Syntax Key Type Remarks

table_data_attribute_parameter_set { tdap

 attribute_ID u(16)

 attribute_name st(v)

 attribute_metadata gen_text

 attribute_type u(8)

 attribute_default_value st(v)

 attribute_missing_value st(v)

 compressor_ID u(8)

 if (transform) { transform defined in

29

compressor in

Table 7

 for (i=0; i<n_dependencies; i++) {

 reserved u(5)

 dependency_table_data_ID[i] u(3)

 dependency_attribute_ID[i] u(16)

 }

 }

 compressor_common_data compressor_common_data

}

6.4.4.2.3 Semantics

attribute_ID is the identifier of the attribute unique within Table Data. It is the same as the index

of the attribute in attribute_parameter_set of Table Data Attribute Information.

attribute_name is the name of the attribute.

attribute_metadata is the metadata of the attribute, which can include a description on the

meaning and format of the attribute value and its belonging attribute group.

attribute_type specifies the data type of the attribute. The possible values and their respective data

type definitions are listed in Table 15.

Table 15 – Attribute type definitions

attribute_type Type Number of bytes

0 Null terminated string variable

1 Char 1

2 Boolean 1

3 Uint8 1

4 Int8 1

5 Uint16 2

6 Int16 2

7 Uint32 4

8 Int32 4

9 Uint64 8

10 Int64 8

11 Float 4

12 Double 8

13 Start_end (pair of uint32) 8

attribute_default_value is the default value of the attribute, mainly used for sparse encoding when

most values equal to the default are excluded.

attribute_missing_value is the missing value of the attribute to be used in place of a null value in

the output after decompression.

compressor_ID is the ID of one of the compressors defined in Dataset Parameter Set for

compressing the data of the attribute.

30

(dependency_table_data_ID[i], dependency_attribute_ID[i]) correspond to the table ID and and

attribute ID of the i-th dependency attribute required by the transform algorithm (if transform == 1)

within the compressor referenced by compressor_ID.

compressor_common_data stores the codebooks/statistical models used by the associated

compressor to apply commonly on all chunks.

Attribute configurations for different genomic file types are specified in document M53383

“Philips’ Response to CE2 of MPEG-G Part 6”.

6.4.5 Table Data Master Index

6.4.5.1 General

Table Data Master Index is a container box of indexing information that includes the definition of

chunk structure(s), i.e. the range of indices (both rows and columns for 2-d data) per chunk, and

byte-offset pointers to individual Table Blocks and their subsidiary payloads.

Table 16 – Table Data Master Index syntax

Syntax Key Type Remarks

table_data_master_index { tdmi

 table_data_header table_data_header As specified in 6.6.4

 reserved u(6)

 attribute_dependent_chunks u(1)

 attribute_contiguity u(1)

 if (!attribute_dependent_chunks)

 chunk_structure tdcs gen_info As specified in 6.4.5.2

 else {

 for (i=0; i<n_attributes; i++)

 chunk_structure[i] tdcs gen_info As specified in 6.4.5.2

 }

 payload_byte_offset tdbo gen_info As specified in 6.5.2

}

attribute_dependent_chunks is a flag, and if set to 1, indicates that each attribute has a different

chunk structure. Otherwise, all attributes share the same chunk structure.

attribute_contiguity is a flag, and if set to 1, indicates that the data payloads are grouped into

Table Blocks by attribute. Otherwise, data payloads are grouped into Table Blocks by chunk.

6.4.5.2 Table Data Chunk Structure

6.4.5.2.1 General

Table Data Chunk Structure is a box specifying how the 1-d or 2-d attribute data should be divided

into rectangular chunks defined by ranges of row and column indices.

6.4.5.2.2 Syntax

Table 17 – Table Data Chunk Structure syntax

Syntax Key Type Remarks

table_data_chunk_structure { tdcs

31

 reserved u(7)

 variable_size_chunks u(1)

 n_chunks u(table_index_size*8)

 if (variable_size_chunks) {

 for (i=0; i<n_chunks; i++) {

 for (j=0; j<(two_dimensional +1); j++) {
two_dimensional

defined in Table 12

 start_index[i][j] u(table_index_size*8)

 end_index[i][j] u(table_index_size*8)

 }

 }

 }

 else {

 for (j=0; j<(two_dimensional + 1); j++)

 chunk_size[j] u(table_index_size*8)

 }

}

6.4.5.2.3 Semantics

variable_size_chunks is a flag, and if set to 1, indicates that the size of each chunk is different, and

thus the corresponding start and end indices are specified independently. Otherwise, a uniform size

applies to all chunks. If the number of rows/columns is unknown as in the case of data generation

and transport, a uniform chunk size should be applied with variable_size_chunks set to 0.

n_chunks specifies the total number of chunks defined in this chunk structure. In the case of

transport when data generation is ongoing, a value of 0 can be applied if the number is unknown.

At the completion of data generation and transport, the value of n_chunks should be computed and

reassigned. The number of bits for n_chunks is the same as the number of bits for column/row

index, i.e. table_index_size*8, to allow having one chunk per row or column.

(start_index[i][j], end_index[i][j]) is the pair of start and end indices defining the range of rows (j

== 0) or columns (j == 1) for the ith rectangular chunk, only used when variable_size_chunks == 1.

chunk_size[j] specifies the number of rows (j == 0) or columns (j == 1) per chunk, only used when

variable_size_chunks == 0.

6.4.6 Table Data Supplementary Indices

6.4.6.1 General

Table Data Supplementary Indices is an optional container box that carries additional attribute-

specific indexing data for enabling query search based on criteria such as genomic region, gene

symbol or any other attributes.

Table 18 – Table Data Supplementary Indices syntax

Syntax Key Type Remarks

table_data_supplementary_indices { tdsi

 table_data_header table_data_header As specified in 6.6.4

 n_supp_indices u(8)

 for (i=0; i<n_supp_indices; i++)

 supp_index_data[i] tdsd As specified in 6.4.6.2

32

}

n_supp_indices specifies the number of supplementary indices associated with the Table Data.

6.4.6.2 Table Data Supplementary Index Data

6.4.6.2.1 General

Table Data Supplementary Index Data is a box containing information and data of a supplementary

index.

6.4.6.2.2 Syntax

Table 19 – Table Data Supplementary Index Data syntax

Syntax Key Type Remarks

table_data_supplementary_index_data { tdsd

 n_index_attributes u(8)

 for (i=0; i<n_index_attributes; i++)

 index_attribute_ID[i] u(16)

 index_type st(v)

 index_data u(index_data_size*8)

}

6.4.6.2.3 Semantics

n_index_attributes is the number of attributes associated with the supplementary index.

index_attribute_ID is the ID of an attribute within the same Table Data associated with the

supplementary index.

index_type specifies the type of the supplementary index. Possible values include “CSI” (Crowd

Sourced Indexing), “B-Tree”, “R-Trees” and “LevelDB”.

index_data is the indexing data on which queries by attribute values are performed to return the

row and/or column indices of the matched data. The size of index_data is given by index_data_size

= Length – [13 + n_index_attributes  2 + sizeof(index_type)], where Length is defined in the

gen_info header of the tdsd container.

6.4.7 Table Data Block

6.4.7.1 General

Table Data Block is a box containing the compressed payloads, either of the same chunk and

ordered by attributes (block_type == 0 for chunk contiguity), or of the same attribute and ordered

by chunks (block_type == 1 for attribute contiguity).

6.4.7.2 Syntax

Table 20 – Table Data Block syntax

Syntax Key Type Remarks

table_data_block { tdbl

33

 table_data_header
table_data_

header
As specified in 6.6.4

 reserved u(7)

 block_type u(1)

 if (block_type == 0) {

 if (variable_size_chunks || !two_dimensional) {

variable_size_chunks defined

in the uniform chunk

structure in Table 10;

two_dimensional defined in

Table 12

 chunk_idx_1
u(table_ind

ex_size*8)

 chunk_idx_2 = 0

 }

 else {

 chunk_idx_1
u(table_ind

ex_size*8)

 chunk_idx_2
u(table_ind

ex_size*8)

 }

 for (i=0; i<n_attributes; i++) {
n_attributes defined in Table
13

 payload_size[i][chunk_idx_1][chunk_idx_2] u(32)

 payload[i][chunk_idx_1][chunk_idx_2]
u(payload_

size[i]*8)

 }

 }

 else {

 attribute_ID u(16)

 if (variable_size_chunks || !two_dimensional) {

 for (j=0; j<n_chunks; j++) {

 payload_size[attribute_ID][j] u(32)

 payload[attribute_ID][j]
u(payload_

size[i]*8)

 }

 }

 else if (column_major_chunk_order) {
column_major_chunk_order

defined in Table 12

 n_chunks_per_col
u(table_ind

ex_size*8)

 for (k=0; k<n_chunks_per_row; k++) {
The number of chunks per

row/column is determined by

the total number of columns/

rows in the Table Data and

the row/column chunk size of

the attribute.
 for (j=0; j<n_chunks_per_col; j++) {

 payload_size[attribute_ID][j][k] u(32)

 payload[attribute_ID][j][k]
u(payload_

size[i]*8)

 }

 }

 }

 else {

 n_chunks_per_row u(table_ind

34

ex_size*8)

 for (j=0; j<n_chunks_per_col; j++) {

 for (k=0; k<n_chunks_per_row; k++) {

 payload_size[attribute_ID][j][k] u(32)

 payload[attribute_ID][j][k]
u(payload_

size[i]*8)

 }

 }

 }

 }

}

6.4.7.3 Semantics

block_type is the type of the Table Data Block. The possible values are: 0 = chunk-contiguous

(consisting of payloads of different attributes belonging to the same chunk) and 1 = attribute-

contiguous (consisting of payloads of different chunks belonging to the same attribute).

(chunk_idx_1, chunk_idx_2) is the pair of row and column indices of the chunk associated with

the Table Data Block, only applicable when block_type == 0 (chunk-contiguous and implying same

chunk structure across all attributes). When the Table Data is 2-d (two_dimensional == 1) and a

fixed chunk size is applied (variable_size_chunks == 0), the pair of indices starts from (0, 0) at the

top-left of the Table Data, and increases by 1 for the next chunk towards the right/bottom. When

the Table Data is 1-d (two_dimensional == 0) or the chunk size is variable (variable_size_chunks

== 1), only chunk_idx_1 is used and chunk_idx_2 is set to 0.

attribute_ID is the index of the attribute associated with the Table Data Block, only applicable

when block_type == 1 (attribute-contiguous). The attribute index, counting from 0, should be in the

same order as the array of attribute_parameter_set in Table Data Attribute Information.

n_chunks_per_col specifies the total number of chunks in a column, only used when block_type

== 1 (attribute-contiguous), variable_size_chunks == 0, two_dimensional == 1 and

column_major_chunk_order == 1. This number is needed for computing the row and column

indices of each chunk in the 2-d Table Data for data access and reconstruction.

n_chunks_per_row specifies the total number of chunks in a row, only used when block_type ==

1 (attribute-contiguous), variable_size_chunks == 0, two_dimensional == 1 and

column_major_chunk_order == 0. This number is needed for computing the row and column

indices of each chunk in the 2-d Table Data for data access and reconstruction.

Note that the values of n_chunks, n_chunks_per_column and n_chunks_per_row are specific to the

attribute referred to by attribute_ID if attribute_dependent_chunks == 1.

(payload_size[i][j][k], payload[i][j][k]) are the size in number of bytes and data of the compressed

payload that corresponds to the chunk of row and column indices (j, k) in the i-th attribute. Note

that even for empty payloads, payload_size must be included and set to 0.

35

6.5 Data structures specific to file format

6.5.1 General

This subclause specifies the data structures specific to the storage of genomic information, in

addition to the data structures specified in subclause 6.4.

6.5.2 Table Data Byte Offset

6.5.2.1 General

Table Data Byte Offset is a box containing the byte-offset pointers to the Table Data Blocks and

their individual payloads.

6.5.2.2 Syntax

Table 21 – Table Data Byte Offset syntax

Syntax Key Type Remarks

table_data_byte_offset { tdbo

 if (!attribute_dependent_chunks &&

 !attribute_contiguity) {
 Parameters defined in Table 16

 if (variable_size_chunks || !two_dimensional) {

variable_size_chunks defined

in the uniform chunk structure

in Table 10; two_dimensional

defined in Table 12

 for (j=0; j<n_chunks; j++) {

n_chunks defined in the

uniform chunk structure in

Table 10

 chunk_block_offset[j] u(byteOffsetSize)

 if (chunk_block_offset[i] > 0) {
If Table Data Block for chunk

i exists.

 for (i=0; i<n_attributes; i++)
n_attributes defined in Table

13

 payload_offset[i][j] u(byteOffsetSize)

 }

 }

 }

 else if (column_major_chunk_order) {
column_major_chunk_order

defined in Table 12

 for (k=0; k<n_chunks_per_row; k++) {
The number of chunks per

row/column is either inferred

from dimension_size and

chunk_size, or the range of

chunk indices of the

transported Table Data Blocks.
 for (j=0; j<n_chunks_per_col; j++) {

 chunk_block_offset[j][k] u(byteOffsetSize)

 if (chunk_block_offset[j][k] > 0)
If Table Data Block for chunk

(j, k) exists

 for (i=0; i<n_attributes; i++)

 payload_offset[i][j][k] u(byteOffsetSize)

 }

 }

 }

 }

36

 else {

 for (j=0; j<n_chunks_per_col; j++) {

 for (k=0; k<n_chunks_per_row; k++) {

 chunk_block_offset[j][k] u(byteOffsetSize)

 if (chunk_block_offset[j][k] > 0) {

 for (i=0; i<n_attributes; i++)

 payload_offset[i][j][k] u(byteOffsetSize)

 }

 }

 }

 }

 }

 else {

 for (i=0; i<n_attributes; i++) {

 attribute_block_offset[i] u(byteOffsetSize)

 if (attribute_block_offset[i] > 0) {
If Table Data Block for

Attribute i exists

 if (variable_size_chunks[i] ||

 !two_dimensional) {

 for (j=0; j<n_chunks[i]; j++)

 payload_offset[i][j] u(byteOffsetSize)

 }

 else if (column_major_chunk_order) {

 for (k=0; k<n_chunks_per_row[i]; k++) {

 for (j=0; j<n_chunks_per_col[i]; j++)

 payload_offset[i][j][k] u(byteOffsetSize)

 }

 }

 else {

 for (j=0; j<n_chunks_per_col[i]; j++) {

 for (k=0; k<n_chunks_per_row[i]; k++)

 payload_offset[i][j][k] u(byteOffsetSize)

 }

 }

 }

 }

 }

}

6.5.2.3 Semantics

chunk_block_offset[j][k] is the byte offset, counting from the beginning of the associated Table

Data container, to a chunk-contiguous Table Data Block (block_type == 0) that contains the

payload data of all attributes for the chunk of row and column indices (j, k). Its value should be 0 if

the Table Data Block for chunk (j, k) does not exist when the payloads are all empty. If

variable_size_chunks == 1 and two_dimensional == 0, the second index [k] can be dropped.

attribute_block_offset[i] is the byte offset, counting from the beginning of the associated Table

Data container, to an attribute-contiguous Table Data Block (block_type == 1) that contains the

payload data of all chunks for the i-th attribute as defined in Table Data Attribute Information. Its

value should be 0 if the Table Data Block for the i-th attribute does not exist when the payloads are

all empty.

37

payload_offset[i][j][k] is the byte offset, counting from the beginning of the encapsulating Table

Data Block container, to the compressed payload data that corresponds to the chunk of row and

column indices (j, k) in the i-th attribute. Note that even for empty payloads, payload_size must be

included and set to 0. If variable_size_chunks == 1 and two_dimensional == 0, the third index [k]

can be dropped.

Note that if attribute_dependent_chunks == 1, the values of n_chunks[i], n_chunks_per_row[i] and

n_chunks_per_col[i] are specific to the i-th attribute. Otherwise, their values are uniform across all

attributes and the index [i] can be dropped.

6.6 Data structures specific to transport format

6.6.1 General

This subclause specifies the data structures specific to the transport of genomic information, in

addition to the data structures specified in subclause 6.4.

6.6.2 Data Streams

A data stream is identified by a unique Stream_ID, equal to the SID field of packet header as

specified in subclause 6.7.5.2 of Part 1, and it can transport any of the following data structures:

― File Header, as specified in subclause 6.5.1 of Part 1: this data stream shall be unique and

composed by one or more packets with Stream ID (SID in packet header, as specified in

subclause 6.7.5.2 of Part 1) equal to 1.

― Dataset Group Header, as specified in subclause 6.5.2.2 of Part 1,

― Dataset Header, as specified in subclause 6.4.1.2,

― Dataset Parameter Set, as specified in subclause 6.4.1.3,

― Table Header, as specified in subclause 6.4.2.2,

― Table Data Attribute Information, as specified in subclause 6.4.4,

― Table Data Master Index, as specified in subclause 6.4.5,

― Table Data Supplementary Indices, as specified in subclause 6.4.6,

― Table Data Block, as specified in subclause 6.4.7,

― data structures containing transport information (dataset mapping table list as specified in

subclause 6.7.3 of Part 1, and dataset mapping table as specified in subclause 6.6.3),

― metadata and protection information, as specified in subclauses 6.5.2.6, 6.5.2.7, 6.5.3.3 and

6.5.3.4 of Part 1, and subclauses 6.4.2.3 and 6.4.2.4.

38

6.6.3 Dataset Mapping Table

6.6.3.1 General

Dataset Mapping Table is a mandatory box listing all data streams transporting data related to the

dataset identified by dataset_ID. The syntax and semantics of Dataset Mapping Table remain the

same as described in subclause 6.7.4 of Part 1. To support the transport of the new data structures

specific to annotation datasets, Table 37 of Part 1 is extended to include new data types that

identify the types of data structure carried by packets. Table 16 shows the list of data types relevant

to annotation datasets, with those already existing in Part 1 in gray text.

Table 22 – data_type field semantics

data_type Data structure Subclause

0 dataset_group_header 6.5.2.2 of Part 1

3 dataset_header 6.5.3.2 of Part 1

4 dataset_parameter_set 6.4.1.3

5 dataset_group_metadata 6.5.2.6 of Part 1

6 dataset_metadata 6.5.3.3 of Part 1

7 dataset_group_protection 6.5.2.7 of Part 1

8 dataset_protection 6.5.3.4 of Part 1

15 table_header 6.4.2.2

16 table_data_attribute_information 6.4.4

17 table_data_master_index 6.4.5

18 table_data_supplementary_indices 6.4.6

19 table_data_block 6.4.7

20 table_metadata 6.4.2.3

21 table_protection 6.4.2.4

For the Table-related data types 15-21, it is recommended that their associated data_SID (Data

Stream ID), as specified in subclause 6.7.4 of Part 1, to be unique across different dataset_ID and

dataset_group_ID for ease of implementation. However, the same data_SID can also be reused by

the same data type of different dataset_ID and dataset_group_ID, provided the data structures are

transported one after another in the same stream without interleaving of their packets, since the

associated dataset_ID and dataset_group_ID are carried within the data structures. If data is

generated by parallel processes, more than one data_SID can be assigned to data type 19 to speed

up the transmission of Table Data Blocks, which carry the table payloads.

6.6.4 Table Data Header

6.6.4.1 General

Table Data Header is a mandatory data structure in the transport format for the four boxes – Table

Data Attribute Information, Table Data Master Index, Table Data Supplementary Indices and Table

Data Block – under Table Data. It contains the IDs of the upper-level containers that are required

for the assembly of the Table Data structures after transport, but is excluded from the file format.

6.6.4.2 Syntax

Table 23 – Table Data Header syntax

Syntax Key Type Remarks

39

table_data_header {

 reserved u(5)

 dataset_group_ID u(8)

 dataset_ID u(16)

 table_ID u(8)

 table_data_ID u(3)

}

6.6.4.3 Semantics

dataset_group_ID is the identifier of dataset group containing the dataset identified by dataset_ID.

dataset_ID is the identifier of the dataset containing the Table identified by table_ID.

table_ID is the identifier of the table containing the Table Data identified by table_data_ID.

table_data_ID is the identifier of the Table Data containing the data structures associated with this

Table Data Header.

7 Strengths and features

7.1 Compatibility with ISO/IEC 23092 (MPEG-G) Series

This file and transport format for genomic annotation data is fully compatible with other MPEG-G

parts in the following ways:

― The overall data structures and hierarchical encapsulation levels (subclause 6.1.1 of Part 1),

general syntax and semantics (subclause 6.2 of Part 1), and the gen_info box structure

(subclause 6.3 of Part 1) are preserved.

― The syntax and usage of the highest-level containers File and Dataset Group remain the same as

specified in Part 1.

― The syntax of the Dataset container in Part 1 is extended to support a new Dataset Type specific

to the representation of genomic annotation data.

― The Dataset Parameter Set container in Part 1 is extended to store the parameters, mainly

compressor definitions, used by annotation datasets.

― The coding/decoding process for the metadata and protection fields in Table is the same as the

metadata and protection fields in Dataset Group and Dataset, with the XML schema extended to

carry information specific to Tables and support new functionalities.

― The data transport mechanism described in Part 1 remains the same, with Dataset Mapping

Table extended to support new data types that correspond to container boxes specific to

annotation datasets.

7.2 Interoperability with existing MPEG-G components

Among the list of available decoding software components specified in subclause 6.3.2 of Part 4,

this format should be interoperable with core decoder – decapsulator, parameter set parser and

40

CABAC engine. Most of the other components are specific to the decoding of sequencing data and

are therefore not applicable to annotation datasets.

7.3 Indexing capabilities

Indexing capabilities are realized through the following data structures:

― Table Data Master Index that provides the mapping between row and/or column indices of a

table and specific chunks of an attribute.

― Table Data Supplementary Indices that provides the mapping between row and/or column

indices of a table and values of selected attributes such as genomic position and gene symbols.

Compound query that consists of a logical combination of attribute conditions can be realized by

(1) looking up the row and/or column indices satisfying each attribute condition independently, (2)

identifying the subset of indices satisfying the logics in the compound query, (3) mapping the

subset of indices to specific chunks of an attribute, and (4) looking up the locations of the payloads

of the matching chunks.

7.4 Selective access to data subsets

Selective access is enabled through data chunking, i.e. dividing each table attribute into rectangular

chunks, which are then compressed individually. To access data in specific regions of the table, the

chunks in those regions are identified and their payloads located using the information in Table

Data Master Index. Decompression is then applied only on the payloads of the matching chunks to

retrieve the original data in the requested regions.

7.5 Controlled access to and authentication of data subsets

Controlled access to and authentication of data subsets within a table in an annotation dataset are

enabled through privacy rules and signature elements in the schema for Table Protection metadata.

Users may define the attributes, chunks, genomic regions, and ranges of table indices on which a

privacy rule is applied. There can be any number of XML signature elements in protection

metadata and a URI should be used to specify the attributes and chunks associated with each

signature.

7.6 Data linkages

This format supports the creation of data linkages useful for join table query and efficient data

visualization. Data linkages can be defined as URIs in:

― Table Metadata – at this level, linkages can be between two datasets, e.g. an annotation table

and its originating sequencing dataset, or two tables, where the rows/columns of one table are

mapped to the rows/columns of another table

― Auxiliary Table Data (classes 3 and 4) for row/column linkage attributes – at this level, a

linkage is defined per row/column. For example, in a VCF file, each sample in the column

should be linked to its corresponding sequencing dataset from which its variants are called.

41

7.7 Simplicity of syntax

Since this format for genomic annotation data is fully integrated into the MPEG-G container box

hierarchy and uses the same data structures for transport, it can keep the syntax succinct by

introducing only data structures specific to the organization of data within a table.

7.8 Flexibility

Flexibility is one of the main design principles of this format and is offered in the following

aspects:

― Customizable compressor configurations for adopting new transform and compression

algorithms

― Customizable attribute definitions for accommodating new annotation file types

― Multiple Tables can be stored in a dataset, e.g. to represent data at different resolutions

― Multiple auxiliary Table Data can be provided to supplement the main Table Data with

additional information

― Flexible chunk structure – uniform or attribute-dependent, fixed- or variable-size – for optimum

compression and random access performance

― Attribute or chunk contiguity in grouping payloads into Table Data Blocks

― Row- or column-major chunk order in organizing payloads or Table Data Blocks

― Different symmetry modes (0 = unsymmetrical; 1 = symmetrical; 2 = skew-symmetric; 3 =

Hermitian; 4-7 = reserved or user-defined) over the major/minor diagonal of a matrix

7.9 Support for future extensions

This format can be readily extended to accommodate any future annotation file types and

transform/compression algorithms by providing new configurations of attributes and compressors

defined in Table Data Attribute Information and Dataset Parameter Set.

