
1 
 

INTERNATIONAL ORGANISATION FOR STANDARDISATION 
ORGANISATION INTERNATIONALE DE NORMALISATION 

ISO/IEC JTC1/SC29/WG11 
CODING OF MOVING PICTURES AND AUDIO 

 
ISO/IEC JTC1/SC29/WG11 MPEG2020/M53384 

April 2020, Alpbach, AT 
 
 
Source ISO/IEC JTC1/SC29/WG11 
Status Input Document 
Title Using Philips' Proposed Format for MPEG-G Part 6 to Accommodate GPress, 

GTRAC and GTC Compressors 
Authors Shubham Chandak (Stanford University), Patrick Y.H. Cheung (Royal Philips)*, 

Qingxi Meng (University of Illinois at Urbana-Champaign), Mikel Hernaez (Center 
for Applied Medical Research at University of Navarra, UIUC), Idoia Ochoa (Tecnun 
at University of Navarra, UIUC) 

 
* Corresponding Author 
 
 

Introduction 
 
Here we briefly describe how aspects of GPress [1] and GTRAC/GTC [2,3] can be integrated with the 
proposed format. The algorithms and details of integration are already discussed in some detail in other 
documents including the submission for the previous meeting [4]. We describe how the variables such as 
transform_algorithm, n_dependencies, dependency_attribute_id and compression_algorithm can be set 
to achieve this integration. 
 
 

GPress 
 
For GTF files, Gpress uses conditional compression of the start/end, strand and frame columns based on 
the feature column. This can be achieved by defining appropriate transform_algorithm. In particular we 
can use the following: 

- Reorder_transform – reorder one attribute based on values of another attribute (can be used for 
frame columns) 

- GTF_start_end_tranform – specialized algorithm from GPress for start_end attribute 
- GTF_strand_transform - specialized algorithm from GPress for strand attribute 

 
The value of the parameter n_dependencies can be set to 1 for these since the only dependency is the 
feature attribute, and the dependency_attribute_id[0] is set to 2 (corresponding to feature attribute). 
 



2 
 

For sparse RNA sequencing expression data, we can use transform_algorithm “sparse_transform” for 
converting the sparse matrix data into coordinate and value streams. In this case, n_dependencies 
variable is set to 0. 
 
For bulk RNAseq expression data, GPress compresses the different columns separately which can be 
achieved by considering the columns as distinct attributes. Most attributes are compressed directly, while 
the first column (target ID) can be tokenized (setting compression_algorithm to TOKENIZATION which is 
similar to that used in MPEG-G part 2 for read names). 
 
GPress uses BSC as the compression algorithm for the attributes (after the transform) which can be 
supported by the format by appropriately setting compression_algorithm to BSC.  
 
Finally, the random access in GPress can be incorporated directly in the proposed format since both use 
block (chunk)-based random access strategies. We need to use supplementary indices for random access 
by genome position and by gene id. The linkage between the GTF and expression data can be achieved as 
discussed in [4]. 
 
More details can be found in the references. 
 
 

GTRAC and GTC 
 
GTRAC/GTC can be used as a compression_algorithm for the genotype (GT) attribute within each chunk. 
Note that GTRAC/GTC offers both improved compression and random access to a row or column of the 
genotype data. Since the file format already uses chunks for random access, we can combine this chunk-
level random access with the finer random access from GTRAC/GTC within a chunk.  
 
 

References 
1. Meng, Qingxi, Idoia Ochoa, and Mikel Hernaez. "GPress: a framework for querying General 

Feature Format (GFF) files and feature expression files in a compressed form." bioRxiv (2019): 
833087. 

2. Tatwawadi, K., Hernaez, M., Ochoa, I., & Weissman, T. (2016). GTRAC: fast retrieval from 
compressed collections of genomic variants. Bioinformatics, 32(17), i479-i486. 

3. Danek, Agnieszka, and Sebastian Deorowicz. "GTC: how to maintain huge genotype 
collections in a compressed form." Bioinformatics 34.11 (2018): 1834-1840. 

4. M52159 Proposal of a Unified File Format for Genomic Annotations 
 
 
  



3 
 

Annex A Syntax and Semantics of Compressor 
 
The syntax and semantics of Compressor are excerpts from subclause 6.4.1.3 of “Philips’ 
Response to CE1 (Phase 1) of MPEG-G Part 6” (M53381). 

Table A1 – Compressor syntax 

Syntax Type 

compressor {  

 compressor_ID st(v) 

 reserved u(7) 

 transform u(1) 

 if (transform) {  

  transform_algorithm_ID st(v) 

  n_dependencies u(8) 

 }  

 n_compression_algorithms  

 for (i=0; i<n_compression_algorithms; i++) {  

  compression_algorithm_ID[i] st(v) 

  compression_algorithm_pars[i] st(v) 

 }  

}  

 
dataset_type specifies the type of data in the dataset for which the encoding parameters are 
defined. The possible values are: 0 = non-aligned content; 1 = aligned content; 2 = reference; 3 
= annotation. 

n_compressors specifies the number of compressors, i.e. configurations of transform and 
compression algorithms, defined for the annotation dataset. 

compressor_ID is the unique identifier of the compressor within the dataset, with the values 0 
and 1 reserved respectively for no compression and the default compressor. It is used in Table 
Data Attribute Parameter Set as specified in subclause Error! Reference source not found. to 
associate the corresponding configuration of transform and compression algorithms with an 
attribute. 

transform is a flag, and if set to 1, indicates that the compressor involves data transform before 
compression. Otherwise, no data transform is involved. 

transform_algorithm_ID is the identifier of the transform algorithm being applied, optionally 
followed by a comma and then a URI that points to the codes of the transform algorithm. The 
URI shall be compliant with IETF RFC 3986 and IETF RFC 7320. If the ID is known and the codes 
are already installed, an MPEG-G compliant software can directly perform the 
transform/inverse-transform operation. If the ID is unknown and a URI is available, then the 



4 
 

software should prompt the user to download and install the codes, and register the ID and a 
pointer to the executables for future use. If the ID is unknown and there is no URI, then the 
software should inform the user that the algorithm is not available. 

n_dependencies specifies the number of dependency attributes for the transform. 

n_compression_algorithms specifies the number of compression algorithms applied on an 
attribute in sequential order. 

compression_algorithm_ID[i] is the identifier of the i-th compression algorithm being applied, 
optionally followed by a comma and then a URI that points to the codes of the compression 
algorithm. The URI shall be compliant with IETF RFC 3986 and IETF RFC 7320. If the ID is known 
and the codes are already installed, an MPEG-G compliant software can directly perform the 
transform/inverse-transform operation. If the ID is unknown and a URI is available, then the 
software should prompt the user to download and install the codes, and register the ID and a 
pointer to the executables for future use. If the ID is unknown and there is no URI, then the 
software should inform the user that the algorithm is not available. 

compression_algorithm_pars[i] is a string of parameters in a predefined format required by the 
i-th compression algorithm. 

 

  



5 
 

Annex B Syntax and Semantics of Table Data Attribute 
Parameter Set 

 
The syntax and semantics of Table Data Attribute Parameter Set for attribute definitions are 
excerpts from subclause 6.4.4.2 of “Philips’ Response to CE1 (Phase 1) of MPEG-G Part 6” 
(M53381). 
 

Table B1 – Table Data Attribute Parameter Set Syntax 

Syntax Key Type Remarks 

table_data_attribute_parameter_set {  tdap     

 attribute_ID    u(16)    

 attribute_name    st(v)    

 attribute_metadata    gen_text    

 attribute_type    u(8)    

 attribute_default_value    st(v)    

 attribute_missing_value    st(v)    

 compressor_ID    u(8)    

 if (transform) {      

transform defined 

in compressor in 

Table A1 

  for (i=0; i<n_dependencies; i++) {        

   reserved    u(5)    

   dependency_table_data_ID[i]    u(3)    

   dependency_attribute_ID[i]    u(16)    

  }        

 }       

 compressor_common_data   
compressor_common_

data 
  

}    

 
attribute_ID is the identifier of the attribute unique within Table Data. It is the same as the 
index of the attribute in attribute_parameter_set of Table Data Attribute Information. 

attribute_name is the name of the attribute. 

attribute_metadata is the metadata of the attribute, which can include a description on the 
meaning and format of the attribute value and its belonging attribute group. 

attribute_type specifies the data type of the attribute. The possible values and their respective 
data type definitions are listed in Table B2. 

 

  



6 
 

Table B2 – Attribute type definitions 

attribute_type Type  Number of bytes  

0  Null terminated string  variable  

1  Char  1  

2  Boolean  1  

3  Uint8  1  

4  Int8  1  

5  Uint16  2  

6  Int16  2  

7  Uint32  4  

8  Int32  4  

9  Uint64  8  

10  Int64  8  

11  Float  4  

12  Double  8  

13  Start_end (pair of uint32)  8  

  

attribute_default_value is the default value of the attribute, mainly used for sparse encoding 

when most values equal to the default are excluded. 

attribute_missing_value is the missing value of the attribute to be used in place of a null value 

in the output after decompression. 

compressor_ID is the ID of one of the compressors defined in Dataset Parameter Set for 

compressing the data of the attribute. 

(dependency_table_data_ID[i], dependency_attribute_ID[i]) correspond to the table ID and 

and attribute ID of the i-th dependency attribute required by the transform algorithm (if 

transform == 1) within the compressor referenced by compressor_ID. 

compressor_common_data stores the codebooks/statistical models used by the associated 
compressor to apply commonly on all chunks. 
 
 
 


