Comparison of deep learning approaches for multi-label chest X-ray classification Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Scientific reports, 9(1), 6381. Kernel interpolation for scalable structured Gaussian processes (KISS-GP) Wilson, A., & Nickisch, H. (2015). In International Conference on Machine Learning (pp. 1775-1784). Attribute-based classification for zero-shot learning of object categories Lampert C, Nickisch H, Harmeling S. (2013). IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 453-465. Continuous-Spectrum Infrared Illuminator for Camera-PPG in Darkness Wang, W., Vosters, L., Brinker, A.C. den (2020). Sensors, 20(11), 3044. Conformal Feature-Selection Wrappers and Ensembles for Negative-Transfer Avoidance Zhou, S., Smirnov E., Schoenmakers, G., Peeters, R., Wu, X. (2020). Neurocomputing, 397, 309-319. Deep Learning for Fast Adaptive Beamforming Luijten, B., Cohen, R., de Bruijn, F. J., Schmeitz, H. A., Mischi, M., Eldar, Y. C., & van Sloun, R. J. (2019). In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1333-1337). IEEE. Adaptive ultrasound beamforming using deep learning Luijten, B., Cohen, R., De Bruijn, F.J., Schmeitz, H.A.W., Mischi, M., Eldar, Y.C., Van Sloun, R.J.G. (2020). IEEE Transactions on Medical Imaging. Sharing Is Caring – Data Sharing Initiatives in Healthcare Hulsen, T. (2020). International Journal of Environmental Research and Public Health, 17(9), 3046. Living-skin classification via remote-PPG Wang, W., Stuijk, S., & de Haan, G. (2017). IEEE Transactions on Biomedical Engineering, 64(12), 2781-2792. Data Science for Healthcare: Methodologies and Applications Consoli, S. & Reforgiato Recupero, D. & Petkovic, M. (2019).
From Big Data to Precision Medicine
Hulsen, T., Jamuar, S.S., Moody, A.R., Karnes, J.H., Varga, O., Hedensted, S., Spreafico, R., Hafler, D.A., McKinney, E.F. (2019). Frontiers in Medicine, 6:34.
Santaolalla, A., Hulsen, T., Davis, J., Ahmed, H.U., Moore, C.M., Punwani, S., Attard, G., McCartan, N., Emberton, M., Coolen, A., Van Hemelrijck, M. (2021). Frontiers in Artificial Intelligence, 4:162. Literature Analysis of Artificial Intelligence in Biomedicine Challenges and Solutions for Big Data in Personalized Healthcare Performance Requirements for Cough Classifiers in real-world applications Brinker, A.C. den, Coman, M., Ouweltjes, O., Crooks, M.G., Thackray-Nocera, S., Morice, A.H. (2021). Proceedings of the 28th European Signal Processing Conference, EUSIPCO 2020, Jan. 2021, Amsterdam, The Netherlands, 96-100. Gilst, M.M. van, Wulterkens, B., Fonseca, P., Radha, M., Ross, M., … Overeem, S. (2020). BMC Research Notes, 13(513). Guidewire segmentation in 4D ultrasound using recurrent fully convolutional networks Lee, B.C., Vaidya, K., Jain, A.K., Chen, A. (2020). Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. PIPPI 2020, Lecture Notes in Computer Science book series, volume 12437, Lima, Peru, October 4-8, 2020, 55-65. Persuasion-Induced Physiology Predicts Persuasion Effectiveness Spelt, H.A.A., Zhang, C., Westerink, J.H.D.M., Ham, J., IJsselsteijn, W. (2020). IEEE Transactions on Affective Computing. Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm Baloescu, C., Toporek, G., Kim, S., McNamara, K., Liu., R., Shaw, M.M., … Moore, C.L. (2020). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(11), 2312-2320. Continuous-Spectrum Infrared Illuminator for Camera-PPG in Darkness Wang, W., Vosters, L., Brinker, A.C. den (2020). Sensors, 20(11), 3044. Sharing Is Caring – Data Sharing Initiatives in Healthcare Hulsen, T. (2020). International Journal of Environmental Research and Public Health, 17(9), 3046. Visual Analytics for Hypothesis-Driven Exploration in Computational Pathology Corvo, A., Garcia Caballero, H.S., Westenberg, M.A., Driel, M.A. van, Wijk, J.J. van (2020). IEEE Transactions on Visualization and Computer Graphics. Learning Metal Artifact Reduction in Cardiac CT images with moving pacemakers Lossau, T. (née Elss), Nickisch, H., Wissel T., Morlock M., Grass, M. (2020). Medical Image Analysis, 61, 101655. Data Augmentation and Semi-supervised Learning for Deep Neural Networks-based Text Classifier Shim, H.,Luca, S., Lowet, D., Vanrumste, B., Stijn L. (2020). Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC '20, March 2020, pp. 1119–1126. Combining deep learning and model-based segmentation for labeled spine CT segmentation Buerger, C., Berg, J. von, Franz, A., Klinder, T., Lorenz, C., Lenga, M. (2020). Proceedings SPIE, Volume 11313, Medical Imaging 2020: Image Processing; 113131C. Correction of motion artifacts using a multiscale fully convolutional neural network Sommer, K., Saalbach, A., Brosch, T., Hall, C., Cross, N.M., Andre, J.B. (2020). American Journal of Neuroradiology, 41(3), 416-423. Modified RGB Cameras for Infrared Remote-PPG Wang, W., Brinker, A.C. den (2020). IEEE Transactions on Biomedical Engineering, 67, 2893 – 2904. Mader, A. O., Lorenz, C., von Berg, J., & Meyer, C. (2019, October). In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 384-392). Springer, Cham. How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning Blendowski, M., Nickisch, H., & Heinrich, M. P. (2019, October). In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 649-657). Springer, Cham. Recurrent Sub-volume Analysis of Head CT Scans for the Detection of Intracranial Hemorrhage Vidya, M. S., Mallya, Y., Shastry, A., & Vijayananda, J. (2019, October). In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 864-872). Springer, Cham. Unpaired Synthetic Image Generation in Radiology Using GANs Prokopenko, D., Stadelmann, J. V., Schulz, H., Renisch, S., & Dylov, D. V. (2019, October). In Workshop on Artificial Intelligence in Radiation Therapy (pp. 94-101). Springer, Cham. Deep Text Prior: Weakly Supervised Learning for Assertion Classification Liventsev, V., Fedulova, I., & Dylov, D. (2019, September). In International Conference on Artificial Neural Networks (pp. 243-257). Springer, Cham. Pseudo-CT image generation from mDixon MRI images using fully convolutional neural networks Stadelmann, J. V., Schulz, H., van der Heide, U. A., & Renisch, S. (2019, March). In Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging (Vol. 10953, p. 109530Z). International Society for Optics and Photonics. Cardiac arrhythmia detection using deep learning: A review Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Journal of electrocardiology. Gooßen, A., Deshpande, H., Harder, T., Schwab, E., Baltruschat, I., Mabotuwana, T., ... & Saalbach, A. (2019). Mallya, Y., Vijayananda, J., Vidya, M. S., Venugopal, V. K., & Mahajan, V. (2019, March). In Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging (Vol. 10953, p. 1095321). International Society for Optics and Photonics. Local and global transformations to improve learning of medical images applied to chest radiographs Vidya, M. S., Krishnan, M., Anirudh, G., Kundeti, S. R., & Vijayananda, J. (2019, March). In Medical Imaging 2019: Image Processing (Vol. 10949, p. 1094936). International Society for Optics and Photonics. Offset regression networks for view plane estimation in 3D fetal ultrasound Schmidt-Richberg, A., Schadewaldt, N., Klinder, T., Lenga, M., Trahms, R., Canfield, E., ... & Lorenz, C. (2019, March). In Medical Imaging 2019: Image Processing (Vol. 10949, p. 109493K). International Society for Optics and Photonics. Baltruschat, I., Grass, M., Saalbach, A., Nickisch, H., von Berg, J., Steinmeister, L., ... & Adam, G. (2019, March). In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren (Vol. 191, No. S 01, pp. WISS-205). Georg Thieme Verlag KG. Heo, H. Y., Xu, X., Jiang, S., Zhao, Y., Keupp, J., Redmond, K. J., ... & Zhou, J. (2019). Magnetic resonance in medicine. A dual stream network for tumor detection in hyperspectral images Weijtmans, P. J. C., Shan, C., Tan, T., de Koning, S. B., & Ruers, T. J. M. (2019, April). In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1256-1259). IEEE. When does Bone Suppression and Lung Field Segmentation Improve Chest X-Ray Disease Classification? Baltruschat, I. M., Steinmeister, L., Ittrich, H., Adam, G., Nickisch, H., Saalbach, A., ... & Knopp, T. (2019, April). In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1362-1366). IEEE. Artificial Intelligence in Clinical Health Care Applications Van Hartskamp, M., Consoli, S., Verhaegh, W., Petkovic, M., & van de Stolpe, A. (2019). Interactive Journal of Medical Research, 8(2), e12100. Context-Driven Concept Annotation in Radiology Reports: Anatomical Phrase Labeling Zhu, H., Paschalidis, I. C., Hall, C., & Tahmasebi, A. (2019). AMIA Summits on Translational Science Proceedings, 2019, 232. Learning deep similarity metric for 3D MR–TRUS image registration Haskins, G., Kruecker, J., Kruger, U., Xu, S., Pinto, P. A., Wood, B. J., & Yan, P. (2019). International journal of computer assisted radiology and surgery, 14(3), 417-425. Yuan, J., Zhu, H., & Tahmasebi, A. (2019). AMIA Summits on Translational Science Proceedings, 2019, 285. CNN-SkelPose: a CNN-based skeleton estimation algorithm for clinical applications Zavala-Mondragon, L. A., Lamichhane, B., Zhang, L., & de Haan, G. (2019). Journal of Ambient Intelligence and Humanized Computing, 1-12. Deep-learning-based motion artefact measures for coronary CT angiography images Lossau, T., Vembar, M., Nickisch, H., Wissel, T., Bippus, R. D., Morlock, M., & Grass, M. (2019, January). European Congress of Radiology 2019. Automatic Normalization of Anatomical Phrases in Radiology Reports Using Unsupervised Learning Tahmasebi, A. M., Zhu, H., Mankovich, G., Prinsen, P., Klassen, P., Pilato, S., ... & Chang, P. (2019). Journal of digital imaging, 32(1), 6-18. Data science in healthcare: Benefits, challenges and opportunities Abedjan, Z., Boujemaa, N., Campbell, S., Casla, P., Chatterjea, S., Consoli, S., ... & Hamelinck, D. (2019). In Data Science for Healthcare (pp. 3-38). Springer, Cham. Introduction to Classification Algorithms and Their Performance Analysis Using Medical Examples Korst, J., Pronk, V., Barbieri, M., & Consoli, S. (2019). In Data Science for Healthcare (pp. 39-73). Springer, Cham. Safety and Regulatory Aspects of Systems for Disease Pre-Screening Mohammad, S. (2019). In Pre-Screening Systems for Early Disease Prediction, Detection, and Prevention (pp. 321-344). IGI Global. Parvaneh, S., & Rubin, J. (2018, September). In 2018 Computing in Cardiology Conference (CinC) (Vol. 45, pp. 1-4). IEEE. Orasanu, E., Brosch, T., Glide-Hurst, C., & Renisch, S. (2018, September). In International Workshop on Shape in Medical Imaging (pp. 291-299). Springer, Cham. Brosch, T., Peters, J., Groth, A., Stehle, T., & Weese, J. (2018, September). In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 515-522). Springer, Cham. Four-Dimensional ASL MR Angiography Phantoms with Noise Learned by Neural Styling Phellan, R., Linder, T., Helle, M., Spina, T. V., Falcão, A., & Forkert, N. D. (2018). In Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (pp. 131-139). Springer, Cham. Improving Clinical Subjects Clustering by Learning and Optimizing Feature Weights Consoli, S., Hendriks, M., Vos, P., Kustra, J., Mavroeidis, D., & Hoffmann, R. (2018, September). In International Conference on Machine Learning, Optimization, and Data Science (pp. 305-316). Springer, Cham. Hasan, S. A., Ling, Y., Liu, J., Sreenivasan, R., Anand, S., Arora, T. R., ... & Farri, O. (2018, September). In International Conference of the Cross-Language Evaluation Forum for European Languages (pp. 224-230). Springer, Cham. Parvaneh, S., Rubin, J., Rahman, A., Conroy, B., & Babaeizadeh, S. (2018). Physiological measurement, 39(8), 084003. Methodologies for workforce optimization in Hospital's Emergency Department Paul, S., Krishnamoorthy, P., Dinesh, M. S., Kailash, S., Bussa, N., & Mariyanna, S. (2018, July). In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4050-4053). IEEE. Recurrent Neural Network for Classification of Snoring and Non-Snoring Sound Events Arsenali, B., van Dijk, J., Ouweltjes, O., den Brinker, B., Pevernagie, D., Krijn, R., ... & Overeem, S. (2018, July). In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 328-331). IEEE. Active learning experiments for the classification of smoking tweets Härmä, A., Polyakov, A., & Chernyak, E. (2018). In AIH@ IJCAI (pp. 193-203). Active Learning for Conversational Interfaces in Healthcare Applications Härmä, A., Polyakov, A., & Artemova, E. (2018, July). In International Workshop on Artificial Intelligence in Health (pp. 48-58). Springer, Cham. Wenzel, F., Meyer, C., Stehle, T., Peters, J., Siemonsen, S., Thaler, C., ... & Alzheimer’s Disease Neuroimaging Initiative. (2018). Medical image analysis, 46, 146-161. Clothing Change Aware Person Identification Xue, J., Meng, Z., Katipally, K., Wang, H., & van Zon, K. (2018). In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 2112-2120). A review of recent advances in data analytics for post-operative patient deterioration detection Petit, C., Bezemer, R., & Atallah, L. (2018). Journal of clinical monitoring and computing, 32(3), 391-402. Foveal fully convolutional nets for multi-organ segmentation Brosch, T., & Saalbach, A. (2018, March). In Medical Imaging 2018: Image Processing (Vol. 10574, p. 105740U). International Society for Optics and Photonics. Nearest neighbor 3D segmentation with context features Hristova, E., Schulz, H., Brosch, T., Heinrich, M. P., & Nickisch, H. (2018, March). In Medical Imaging 2018: Image Processing (Vol. 10574, p. 105740M). International Society for Optics and Photonics. Orientation regression in hand radiographs: a transfer learning approach Baltruschat, I. M., Saalbach, A., Heinrich, M. P., Nickisch, H., & Jockel, S. (2018, March). In Medical Imaging 2018: Image Processing (Vol. 10574, p. 105741W). International Society for Optics and Photonics. Spine centerline extraction and efficient spine reading of MRI and CT data Lorenz, C., Vogt, N., Börnert, P., & Brosch, T. (2018, March). In Medical Imaging 2018: Image Processing (Vol. 10574, p. 1057425). International Society for Optics and Photonics. Unsupervised Time Series Data Analysis for Error Pattern Extraction for Predictive Maintenance Ravi, V., & Patil, R. (2018, April). In International Conference on Advances in Computing and Data Sciences (pp. 1-10). Springer, Singapore. Deep-learning-based CT motion artifact recognition in coronary arteries Elss, T., Nickisch, H., Wissel, T., Schmitt, H., Vembar, M., Morlock, M., & Grass, M. (2018, March). In Medical Imaging 2018: Image Processing (Vol. 10574, p. 1057416). International Society for Optics and Photonics. Living-skin classification via remote-ppg Wang, W., Stuijk, S., & de Haan, G. (2017). IEEE Transactions on Biomedical Engineering, 64(12), 2781-2792. Cloud based big data platform for image analytics Vuppala, S. K., Dinesh, M. S., Viswanathan, S., Ramachandran, G., Bussa, N., & Geetha, M. (2017, November). In 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM) (pp. 11-18). IEEE. Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., & Babaeizadeh, S. (2017, September). In 2017 Computing in Cardiology (CinC) (pp. 1-4). IEEE. Deep Learning Based Rib Centerline Extraction and Labeling Lenga, M., Klinder, T., Bürger, C., von Berg, J., Franz, A., & Lorenz, C. (2018, September). In International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging (pp. 99-113). Springer, Cham. Automatic characterization of sleep need dissipation using a single hidden layer neural network Garcia-Molina, G., Baehr, K., Steele, B., Tsoneva, T., Pfundtner, S., Riedner, B., ... & Tononi, G. (2017). In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 1305-1308). IEEE. Non-wearable sensor based approach to monitor primary health conditions Patil, R. B., & Krishnamoorthy, P. (2017, July). In 2017 IEEE Region 10 Symposium (TENSYMP) (pp. 1-4). IEEE. Predictive modeling for corrective maintenance of imaging devices from machine logs Patil, R. B., Patil, M. A., Ravi, V., & Naik, S. (2017, July). In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1676-1679). IEEE. Neural clinical paraphrase generation with attention Hasan, S. A., Liu, B., Liu, J., Qadir, A., Lee, K., Datla, V., ... & Farri, O. (2016, December). In Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP) (pp. 42-53). Clinical Question Answering using Key-Value Memory Networks and Knowledge Graph. Hasan, S. A., Zhao, S., Datla, V. V., Liu, J., Lee, K., Qadir, A., ... & Farri, O. (2016). In TREC. Four challenges in medical image analysis from an industrial perspective Weese, J., & Lorenz, C. (2016). Systolic blood pressure estimation using PPG and ECG during physical exercise Sun, S., Bezemer, R., Long, X., Muehlsteff, J., & Aarts, R. M. (2016). Physiological measurement, 37(12), 2154. A method to detect tortuosity of vessel using non imaging ultrasound approach in carotid structure Patil, R. B., & Krishnamoorthy, P. (2016, August). In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3555-3559). IEEE. An analytics based clinical decision support system for CVD risk assessment and management Anand, S., Patil, R. B., & Krishnamoorthy, P. (2016, August). In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5620-5623). IEEE. Freiman, M., Lamash, Y., Gilboa, G., Nickisch, H., Prevrhal, S., Schmitt, H., ... & Goshen, L. (2016, March). In Medical Imaging 2016: Image Processing (Vol. 9784, p. 978403). International Society for Optics and Photonics. A method for localized computation of Pulse Wave Velocity in carotid structure Patil, R. B., Krishnamoorthy, P., & Sethuraman, S. (2015, August). In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1898-1901). IEEE. Fast Kronecker inference in Gaussian processes with non-Gaussian likelihoods Flaxman, S., Wilson, A., Neill, D., Nickisch, H., & Smola, A. (2015, June). In International Conference on Machine Learning (pp. 607-616). Learning patient-specific lumped models for interactive coronary blood flow simulations Nickisch, H., Lamash, Y., Prevrhal, S., Freiman, M., Vembar, M., Goshen, L., & Schmitt, H. (2015, October). In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 433-441). Springer, Cham. Krishnamoorthy, P., Patil, R. B., & Ravi, V. (2015, August). In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6122-6125). IEEE.
From big data to better patient outcomes
Hulsen, T., Friedecký, D., Renz, H., Melis, E., Vermeersch, P., Fernandez-Calle, P. (2022). Clinical Chemistry and Laboratory Medicine, 1096
Data Science in Healthcare: COVID-19 and Beyond
Hulsen, T. (2022). International Journal of Environmental Research and Public Health, 19(6): 3499
Editorial: AI in Healthcare: from Data to Intelligence
Hulsen, T., Petkovic, M., Varga, O.E. & Jamuar, S.S. (2022). Frontiers in Artificial Intelligence, 22, 5: 909391
The ReIMAGINE Multimodal Warehouse: Using Artificial Intelligence for Accurate Risk Stratification of Prostate Cancer
Hulsen, T. (2022). Annals of Translational Medicine, 10 (23): 1284
Hulsen, T. (2021). In: Big Data in Psychiatry and Neurology (pp69-94). Elsevier.
May 17, 2024
August 02, 2023
You are about to visit a Philips global content page
Continue